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The state verification task

Consider a quantum device D designed to produce a multipartite state |Ψ⟩
Practically, it may produce σ1, · · · , σN in N uses satisfying i.i.d.
It is guaranteed that D is in either of the following two cases
Good Case: σi = |Ψ⟩⟨Ψ| for all i;

Bad Case: For some fixed ε > 0, ⟨Ψ|σi |Ψ⟩ ⩽ 1− ε for all i.

Ψ σiε

Task: to verify which is the case, using the device as less as possible
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General strategy

The verifier has access to a set of available measurements M

For each output σi, he performs a binary measurement {Tl,1− Tl}, chosen
randomly from M

Commonly, we use Tl to represent the binary measurement
We require that Tl |Ψ⟩ = |Ψ⟩

▶ the measurement detects the Good Case with certainty
▶ Reasonable since we avoid misclassifying good as bad

Measure σi with Tl:
▶ If 1− Tl ticks, concludes the device is in Bad Case
▶ If Tl ticks, continues to test next state

Good Case Bad Case
Tl 3 7

1− Tl impossible 3

Need to minimize the probability of event “7”

σi

1− Tl Tl

bad case ?
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General strategy (cont.)

Algorithm 1: Quantum state verification framework
Input: a sequence of states σi
Output: the device is in “good case” or “bad case”

1 for i = 1 to N do
2 Choose randomly {Tl,1− Tl} from M satisfying Tl |Ψ⟩ = |Ψ⟩
3 Perform the measurement on σi
4 if 1− Tl is returned then
5 Output the device is in “bad case”
6 end
7 end
8 Output the device is in “good case”
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Accepting probability

Ω =
∑
l plTl is called a strategy

What’s the largest probability of event 7?

Pr{7} ⩽ max
⟨Ψ|σ|Ψ⟩⩽1−ε

∑
l

pl Tr [Tlσ]

= max
⟨Ψ|σ|Ψ⟩⩽1−ε

Tr [Ωσ]

= 1− [1− λ↓2(Ω)]ε,

where λ↓2(Ω) is the second largest eigenvalue of Ω1

This is the probability that a fake state σ is wrongly accepted
To achieve a given confidence δ, we require(

1− [1− λ↓2(Ω)]ε
)N

⩽ δ ⇒ N ⩾ 1

[1− λ↓2(Ω)]ε
log 1

δ

1S. Pallister et al., PRL (2018), H. Zhu, M. Hayashi, PRL (2019).

the device is accepted for N tests
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Optimization task
Minimize the second largest eigenvalue w.r.t. available measurements

min λ↓2(Ω)

s. t. Ω =
∑
l

plTl, Tl |Ψ⟩ = |Ψ⟩∑
l

pl = 1, pl ⩾ 0

{Tl,1− Tl} ∈ M

Experimentally motivated measurements M:
LO: local operations; LOCC: local operations and classical communication; SEP: separable measurements

SEP
LOCC

LO
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Two-qubit pure state verification

We aim to verify the two-qubit pure state Ψ of the form

|Ψ⟩ =
√
1− λ |00⟩+

√
λ |11⟩ , λ ∈ (0, 1/2)

Any two-qubit pure state is locally equivalent to |Ψ⟩
Known results

The maximally entangled state case (λ = 1/2) is solved in2

The product state case (λ = 0) is trivial
The locally projective measurement case is solved in3

The global measurement case is trivial3

Our results
We solve this problem completely by deriving optimal strategies for

1 Local operations and one-way classical communication (one-way LOCC);
2 Local operations and two-way classical communication (two-way LOCC); and
3 Separable measurements.

2M. Owari, M. Hayashi, NJP (2008).
3S. Pallister et al., PRL (2018).
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Optimal strategy using one-way LOCC measurements
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One-way LOCC measurements
Step 1. Alice performs the X measurement and sends i ∈ {0, 1} to Bob
Step 2. Conditioning on i, Bob does the following

If i = 0, he performs the measurement |v+⟩⟨v+|;
If i = 1, he performs the measurement |v−⟩⟨v−|, where

|v±⟩ :=
√
1− λ |0⟩ ±

√
λ |1⟩

Alice

Bob

Ψ Ψ

|+⟩⟨+| |−⟩⟨−|

|v+⟩⟨v+| 1− |v+⟩⟨v+| |v−⟩⟨v−| 1− |v−⟩⟨v−|

3 7 3 7

Denote this measurement by Tx, then

Tx = |+⟩⟨+| ⊗ |v+⟩⟨v+|+ |−⟩⟨−| ⊗ |v−⟩⟨v−|

Substituting X with Y and Z, we get Ty and Tz, respectively
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An one-way strategy

Let p := 1−λ
2−λ . In each round, Alice chooses a measurement from

{Tx, Ty, Tz}

with a priori probability { 1−p
2 , 1−p2 , p} to test the state

The strategy has the form

Ω→ =
1− p

2
Tx +

1− p

2
Ty + pTz

= |Ψ⟩⟨Ψ|+ 1− λ

2− λ
|Ψ+⟩⟨Ψ+|+ λ

2− λ
(|01⟩⟨01|+ |10⟩⟨10|)
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Optimality of Ω→

Let |t, s⟩ :=
√
t |0⟩+ eis

√
1− t |1⟩

The most general one-way LOCC strategy

Ω = 2

∫
|t, s⟩⟨t, s|︸ ︷︷ ︸
Alice’s outcome

⊗ |t, s, B⟩⟨t, s, B|︸ ︷︷ ︸
Bob’s measurement conditioned on the outcome

PTS(dtds)

where |t, s, B⟩ :=
√
t(1− λ) |0⟩+ e−is |(1− t)λ⟩ |1⟩

Alice’s operation must be a POVM, imposing the constraint

2

∫
|t, s⟩⟨t, s|PTS(dtds) = 1 ⇒ ET [T ] =

1

2

Applying the averaging technique, the eigenvalues of Ω can be computed

λ2(Ω) = 1− Ξ, λ3(Ω) = Ξ(1− λ), λ4(Ω) = Ξλ, Ξ := 2ET
T (1− T )

T + λ− 2λT

λ↓2(Ω) is achieved when λ2(Ω) = λ3(Ω), resulting λ↓2(Ω) = 1−λ
2−λ

Ψ

|t, s⟩

|t, s, B⟩ 1− |t, s, B⟩

3 7
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Optimal strategy using two-way LOCC measurements
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A two-way LOCC measurement
Step 1. Alice performs measurement η|0⟩⟨0| and sends outcome i to Bob
Step 2. Conditioning on i, Bob does the following

If i = 0, performs Z measurement and accepts if outcome is 0
If i = 1, performs X measurement and sends outcome j to Alice

Step 3. Conditioning on j, Alice does the following
If j = 0, performs ṽ+ and accepts if outcome is ṽ+
If j = 1, performs ṽ− and accepts if outcome is ṽ−

Alice

Bob

Alice

Ψ Ψ

η|0⟩⟨0| (1− η)|0⟩⟨0|+ |1⟩⟨1|

|0⟩⟨0| |1⟩⟨1| |+⟩⟨+| |−⟩⟨−|

ṽ+ 1− ṽ+ ṽ− 1− ṽ−3 7

3 7 3 7
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A two-way LOCC measurement (cont.)

Alice

Bob

Alice

Ψ Ψ

η|0⟩⟨0| (1− η)|0⟩⟨0|+ |1⟩⟨1|

|0⟩⟨0| |1⟩⟨1| |+⟩⟨+| |−⟩⟨−|

ṽ+ 1− ṽ+ ṽ− 1− ṽ−3 7

3 7 3 7

Denote this measurement by TA→B
x , then

TA→B
x = η|0⟩⟨0| ⊗ |0⟩⟨0|+ |ṽ+⟩⟨ṽ+| ⊗ |+⟩⟨+|+ |ṽ−⟩⟨ṽ−| ⊗ |−⟩⟨−|

Switching the role between Alice and Bob, we get TB→A
x

Substituting X with Y and Z, we get TA→B/B→A
y and TA→B/B→A

z
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A two-way strategy

Let η := 1−
√

λ
1−λ and p := λ

1+
√
λ(1−λ)

In each round, Alice chooses a measurement from{
TA→B
x , TB→A

x , TA→B
y , TB→A

y , Tz
}

with a priori probability { 1−p
4 , 1−p4 , 1−p4 , 1−p4 , p} to test the state

The strategy has the form

Ω↔ =
1− p

4

(
TA→B
x + TB→A

x + TA→B
y + TB→A

y

)
+ pTz

= |Ψ⟩⟨Ψ|+
√
λ(1− λ)

1 +
√
λ(1− λ)

(1− |Ψ⟩⟨Ψ|)

This strategy uses up-to three step classical communication
We prove its optimality by showing that it is optimal even if separable
measurements are allowed
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Optimal strategy using separable measurements
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Optimal strategy is always homogeneous

A strategy Ω is homogeneous if it has the form4

Ω = |Ψ⟩⟨Ψ|+ η (1− |Ψ⟩⟨Ψ|)

Our constructed strategy Ω↔ is homogeneous, but Ω→ is not
We show the following5

Lemma 1.
The optimal separable strategy is always homogeneous.

4H. Zhu, M. Hayashi, PRL (2019).
5K. Wang, M. Hayashi, PRA (2019).
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Optimal homogeneous strategy

We are interested in the optimization problem

min η

s. t. Ω = |Ψ⟩⟨Ψ|+ η (1− |Ψ⟩⟨Ψ|)
Ω is a separable operator

Separability is equivalent to the positive partial transpose for 2× 2 space6

Ω is a separable operator ⇔ ΩTB ⩾ 0

⇔ λ4(Ω) = η − (1− η)
√
λ(1− λ) ⩾ 0

⇔ η ⩾ ηsep =

√
λ(1− λ)

1 +
√
λ(1− λ)

The optimal homogeneous separable strategy satisfies

Ωsep = |Ψ⟩⟨Ψ|+ ηsep (1− |Ψ⟩⟨Ψ|) = Ω↔

6E. Størmer, Acta Mathematica (1963), S. L. Woronowicz, Reports on Mathematical Physics (1976).
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Comparison of the strategies

Our proposed strategies witness the power of adaptivity : allowing classical
communication remarkably improves the verification efficiency
Up to three steps of communication is enough to achieve optimality
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Notions on quantum channels
A quantum channel NA→B maps quantum states to quantum states
Quantum gates (unitary channels) are those of the form U ≡ U(·)U†

Choi isomorphism7: there exists an one-one mapping between quantum
channels and quantum states, via

JN := (idA′ ⊗NA→B) |Φ⟩A′A ,

N (ρ) := dTrA
[
(ρT ⊗ 1B)JN

]
.

ΦA′A the maximally entangled state; JN the (bipartite) Choi state

ΦA′A JN

NA→B

Average gate fidelity between two quantum channels:

FA(N ,U) :=
∫
ψ

Tr [N (|ψ⟩⟨ψ|)U(|ψ⟩⟨ψ|)] dψ

7M.-D. Choi, Linear algebra and Its Applications (1975).
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The quantum gate verification task

Consider a quantum device D designed to implement a unitary U
Practically, it may realize an unknown channel N
It is guaranteed that D is in either of the following two cases
Good Case: implements the unitary gate U ;

Bad Case: implements the channel N st FA(N ,U) ⩽ 1− ε

U Nε

Task: to verify which is the case, using the device as less as possible
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From gate verification to state verification: Method I

The verifier prepares a set of bipartite pure test states {pj , |ψjA′A⟩} as inputs

ψj
A′A

N (ψA′A′) vs. U(ψA′A′)

NA→B

Quantum state verification between U(ψj) or {N (ψj)}
However, pure bipartite quantum state preparation is difficult!
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From gate verification to state verification: Method II
The verifier prepares a set of test states {pj , ρj} as inputs

ρj N (ρj) vs. U(ρj)NA→B

For each ρj , prepares a binary measurement {Tj ,1− Tj}
We require Tj always identify the good case: Tr [TjU(ρj)] = 1

Good Case Bad Case
Tl 3 7

1− Tl impossible 3

What’s the probability of event 78?

Pr{7} =
∑
j

pj Tr [TjN (ρj)] ≡ Tr [ΩJN ] , Ω := d
∑
j

pj
(
ρTj ⊗ Tj

)
Equivalent to quantum state verification of JU

Target: Minimize Pr{7} – equivalent to finding optimal Ω
8H. Zhu, H. Zhang, PRA (2020), Y.-C. Liu et al., PRA (2020).
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Outline

1 State verification: The general framework

2 Two-qubit pure state verification

3 Quantum gate verification

4 Conclusions
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Concluding remarks

What we have done?
1 Studied the two-qubit pure state verification problem comprehensively
2 Obtained optimal strategies for each available class of measurements

What we have learnt?
1 Mutually unbiased bases play an important role in state verification
2 They can extract much more information
3 Classical communication helps a lot

What to do next?
1 Optimal/efficient strategies for verifying high-dimensional pure states9

2 Quantum measurement/channel verification10

3 Experimental verification11

9X.-D. Yu et al., npjQI (2019), Z. Li et al., PRA (2019), Y.-C. Liu et al., PRApplied (2019).
10P. Sekatski et al., PRL (2018), J.-D. Bancal et al., PRL (2018).
11W.-H. Zhang et al., arXiv:1905.12175 (2019), X. Jiang et al., arXiv:2002.00640 (2020).
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Q & A

Thank you !

Any questions ?
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