# Uncertainty Relations in the Presence of Quantum Memory for Mutually Unbiased Measurements 

Kun Wang<br>Department of Computer Science and Technology, Nanjing University<br>Joint work with Nan Wu and Fangmin Song (arXiv:1807.01047)

July 12, 2018

## Outline

## Preliminary

Uncertainty relation
Mutually unbiased measurements (MUM) Conditional collision entropy

An equality relation for complete set of MUMs

Implications of the equality relation
Guessing game
Uncertainty relation
Entanglement detection
Open Problems and Summaries
The CQC conjecture
Summary

## Guessing game



- A guessing game ${ }^{1}$ played by Alice and Bob

1. Bob prepares state $\rho_{A B}$ and sends $\rho_{A}$ to Alice
2. Alice measures either $\mathbb{X}$ or $\mathbb{Z}$ (uniformly) and stores outcome $K$
3. Alice tells Bob which measurement $\Theta$ has been conducted
4. Bob guesses the value of $K$

- $\mathbb{X}$ and $\mathbb{Z}$ are known to both Alice and Bob
- How well can Bob guess $K$ on average?

[^0]
## Guessing game



- A guessing game ${ }^{1}$ played by Alice and Bob

1. Bob prepares state $\rho_{A B}$ and sends $\rho_{A}$ to Alice
2. Alice measures either $\mathbb{X}$ or $\mathbb{Z}$ (uniformly) and stores outcome $K$
3. Alice tells Bob which measurement $\Theta$ has been conducted
4. Bob guesses the value of $K$

- $\mathbb{X}$ and $\mathbb{Z}$ are known to both Alice and Bob
- How well can Bob guess $K$ on average?

[^1]
## Guessing game



- A guessing game ${ }^{1}$ played by Alice and Bob

1. Bob prepares state $\rho_{A B}$ and sends $\rho_{A}$ to Alice
2. Alice measures either $\mathbb{X}$ or $\mathbb{Z}$ (uniformly) and stores outcome $K$
3. Alice tells Bob which measurement $\Theta$ has been conducted
4. Bob guesses the value of $K$

- $\mathbb{X}$ and $\mathbb{Z}$ are known to both Alice and Bob
- How well can Bob guess $K$ on average?

[^2]
## Entanglement helps!

- Assume $\mathbb{X}=\left\{\left|x_{i}\right\rangle\right\}$ and $\mathbb{Z}=\left\{\left|z_{j}\right\rangle\right\}$ be complementary on $A$ :

$$
\left|\left\langle x_{i} \mid z_{j}\right\rangle\right|=1 / \sqrt{d} \text { for arbitrary } i, j
$$

- Suppose Bob prepares a maximally entangled state

$$
|\Psi\rangle_{A B}=\frac{1}{\sqrt{d}} \sum_{i}\left|x_{i}\right\rangle_{A}\left|x_{i}\right\rangle_{B}=\frac{1}{\sqrt{d}} \sum_{j}\left|z_{j}\right\rangle_{A}\left|z_{j}\right\rangle_{B}
$$

and sends $\rho_{A}$ to Alice

- Measuring $\rho_{A}$ with $\mathbb{X} / \mathbb{Z}$, Alice gets classical-quantum (cq.) states

- If Alice obtains $x_{i}$, Bob processes state $x_{i}$. Similar for $\mathbb{Z}$
- Bob can guess $K$ with certainty by measuring his state
- Entanglement reduces the Bob's uncertainty about K


## Entanglement helps!

- Assume $\mathbb{X}=\left\{\left|x_{i}\right\rangle\right\}$ and $\mathbb{Z}=\left\{\left|z_{j}\right\rangle\right\}$ be complementary on $A$ : $\left|\left\langle x_{i} \mid z_{j}\right\rangle\right|=1 / \sqrt{d}$ for arbitrary $i, j$
- Suppose Bob prepares a maximally entangled state

$$
|\Psi\rangle_{A B}=\frac{1}{\sqrt{d}} \sum_{i}\left|x_{i}\right\rangle_{A}\left|x_{i}\right\rangle_{B}=\frac{1}{\sqrt{d}} \sum_{j}\left|z_{j}\right\rangle_{A}\left|z_{j}\right\rangle_{B}
$$

and sends $\rho_{A}$ to Alice

- Measuring $\rho_{A}$ with $\mathbb{X} / \mathbb{Z}$, Alice gets classical-quantum (cq.) states

$$
\begin{aligned}
\omega_{X B} & =\frac{1}{d} \sum_{i}\left|x_{i}\right\rangle\left\langle\left. x_{i}\right|_{A} \otimes \mid x_{i}\right\rangle\left\langle\left. x_{i}\right|_{B}\right. \\
\tau_{Z B} & =\frac{1}{d} \sum_{j}\left|z_{j}\right\rangle\left\langle\left. z_{j}\right|_{A} \otimes \mid z_{j}\right\rangle\left\langle\left. z_{j}\right|_{B}\right.
\end{aligned}
$$

- If Alice obtains $x_{i}$, Bob processes state $x_{i}$. Similar for $\mathbb{Z}$
- Bob can guess $K$ with certainty by measuring his state
- Entanglement reduces the Bob's uncertainty about $K$


## Entanglement helps!

- Assume $\mathbb{X}=\left\{\left|x_{i}\right\rangle\right\}$ and $\mathbb{Z}=\left\{\left|z_{j}\right\rangle\right\}$ be complementary on $A$ : $\left|\left\langle x_{i} \mid z_{j}\right\rangle\right|=1 / \sqrt{d}$ for arbitrary $i, j$
- Suppose Bob prepares a maximally entangled state

$$
|\Psi\rangle_{A B}=\frac{1}{\sqrt{d}} \sum_{i}\left|x_{i}\right\rangle_{A}\left|x_{i}\right\rangle_{B}=\frac{1}{\sqrt{d}} \sum_{j}\left|z_{j}\right\rangle_{A}\left|z_{j}\right\rangle_{B}
$$

and sends $\rho_{A}$ to Alice

- Measuring $\rho_{A}$ with $\mathbb{X} / \mathbb{Z}$, Alice gets classical-quantum (cq.) states

$$
\begin{aligned}
\omega_{X B} & =\frac{1}{d} \sum_{i}\left|x_{i}\right\rangle\left\langle\left. x_{i}\right|_{A} \otimes \mid x_{i}\right\rangle\left\langle\left. x_{i}\right|_{B}\right. \\
\tau_{Z B} & =\frac{1}{d} \sum_{j}\left|z_{j}\right\rangle\left\langle\left. z_{j}\right|_{A} \otimes \mid z_{j}\right\rangle\left\langle\left. z_{j}\right|_{B}\right.
\end{aligned}
$$

- If Alice obtains $x_{i}$, Bob processes state $x_{i}$. Similar for $\mathbb{Z}$
- Bob can guess $K$ with certainty by measuring his state


## Entanglement helps!

- Assume $\mathbb{X}=\left\{\left|x_{i}\right\rangle\right\}$ and $\mathbb{Z}=\left\{\left|z_{j}\right\rangle\right\}$ be complementary on $A$ : $\left|\left\langle x_{i} \mid z_{j}\right\rangle\right|=1 / \sqrt{d}$ for arbitrary $i, j$
- Suppose Bob prepares a maximally entangled state

$$
|\Psi\rangle_{A B}=\frac{1}{\sqrt{d}} \sum_{i}\left|x_{i}\right\rangle_{A}\left|x_{i}\right\rangle_{B}=\frac{1}{\sqrt{d}} \sum_{j}\left|z_{j}\right\rangle_{A}\left|z_{j}\right\rangle_{B}
$$

and sends $\rho_{A}$ to Alice

- Measuring $\rho_{A}$ with $\mathbb{X} / \mathbb{Z}$, Alice gets classical-quantum (cq.) states

$$
\begin{aligned}
\omega_{X B} & =\frac{1}{d} \sum_{i}\left|x_{i}\right\rangle\left\langle\left. x_{i}\right|_{A} \otimes \mid x_{i}\right\rangle\left\langle\left. x_{i}\right|_{B}\right. \\
\tau_{Z B} & =\frac{1}{d} \sum_{j}\left|z_{j}\right\rangle\left\langle\left. z_{j}\right|_{A} \otimes \mid z_{j}\right\rangle\left\langle\left. z_{j}\right|_{B}\right.
\end{aligned}
$$

- If Alice obtains $x_{i}$, Bob processes state $x_{i}$. Similar for $\mathbb{Z}$
- Bob can guess $K$ with certainty by measuring his state


## Entanglement helps!

- Assume $\mathbb{X}=\left\{\left|x_{i}\right\rangle\right\}$ and $\mathbb{Z}=\left\{\left|z_{j}\right\rangle\right\}$ be complementary on $A$ : $\left|\left\langle x_{i} \mid z_{j}\right\rangle\right|=1 / \sqrt{d}$ for arbitrary $i, j$
- Suppose Bob prepares a maximally entangled state

$$
|\Psi\rangle_{A B}=\frac{1}{\sqrt{d}} \sum_{i}\left|x_{i}\right\rangle_{A}\left|x_{i}\right\rangle_{B}=\frac{1}{\sqrt{d}} \sum_{j}\left|z_{j}\right\rangle_{A}\left|z_{j}\right\rangle_{B}
$$

and sends $\rho_{A}$ to Alice

- Measuring $\rho_{A}$ with $\mathbb{X} / \mathbb{Z}$, Alice gets classical-quantum (cq.) states

$$
\begin{aligned}
\omega_{X B} & =\frac{1}{d} \sum_{i}\left|x_{i}\right\rangle\left\langle\left. x_{i}\right|_{A} \otimes \mid x_{i}\right\rangle\left\langle\left. x_{i}\right|_{B}\right. \\
\tau_{Z B} & =\frac{1}{d} \sum_{j}\left|z_{j}\right\rangle\left\langle\left. z_{j}\right|_{A} \otimes \mid z_{j}\right\rangle\left\langle\left. z_{j}\right|_{B}\right.
\end{aligned}
$$

- If Alice obtains $x_{i}$, Bob processes state $x_{i}$. Similar for $\mathbb{Z}$
- Bob can guess $K$ with certainty by measuring his state
- Entanglement reduces the Bob's uncertainty about $K$


## Uncertainty relation (in the presence of memory)

- How much can the entanglement reduce uncertainty?
- That is, what if Bob prepares an arbitrary state $\rho_{A B}$ ?
- Measuring $\rho_{A}$ with $\mathbb{X} / \mathbb{Z}$, Alice gets two cq . states

- To answer this question, we must know

1. How to quantify the entanglement of $\rho_{A B}$ ? 2. How to quantify the uncertainty of $\omega_{X B}$ and $\tau_{Z B}$ ?

- Uncertainty relation in the presence of memory (UR) ${ }^{2}$ $\mathrm{H}(X \mid B)_{\omega}+\mathrm{H}(Z \mid B)_{\tau} \geqslant \log d+\mathrm{H}(A \mid B)_{\rho}$ - $\mathrm{H}(A \mid B)_{\omega, \tau, \rho}$ is the conditional entropy of state $\omega$, $\tau$, and $\rho$ - $\mathrm{H}(A \mid B)$ quantifies the uncertainty about $A$ given knowledge of $B$


## Uncertainty relation (in the presence of memory)

- How much can the entanglement reduce uncertainty?
- That is, what if Bob prepares an arbitrary state $\rho_{A B}$ ?
- Measuring $\rho_{A}$ with $\mathbb{X} / \mathbb{Z}$, Alice gets two cq. states

$$
\begin{aligned}
\omega_{X B} & =\sum_{i} p_{i}\left|x_{i}\right\rangle\left\langle x_{i}\right| \otimes \omega_{i}^{B},
\end{aligned} \quad p_{i}=\operatorname{Tr}\left\langle x_{i}\right| \rho_{A B}\left|x_{i}\right\rangle,
$$

- To answer this question, we must know

1. How to quantify the entanglement of $\rho_{A B}$ ? 2. How to quantify the uncertainty of $\omega_{X B}$ and $\tau_{Z B}$ ?
$\downarrow$ Uncertainty relation in the presence of memory (UR) ${ }^{2}$


## Uncertainty relation (in the presence of memory)

- How much can the entanglement reduce uncertainty?
- That is, what if Bob prepares an arbitrary state $\rho_{A B}$ ?
- Measuring $\rho_{A}$ with $\mathbb{X} / \mathbb{Z}$, Alice gets two cq. states

$$
\begin{array}{cl}
\omega_{X B}=\sum_{i} p_{i}\left|x_{i}\right\rangle\left\langle x_{i}\right| \otimes \omega_{i}^{B}, & p_{i}=\operatorname{Tr}\left\langle x_{i}\right| \rho_{A B}\left|x_{i}\right\rangle \\
\tau_{Z B}=\sum_{j} q_{j}\left|z_{j}\right\rangle\left\langle z_{j}\right| \otimes \tau_{j}^{B}, & q_{j}=\operatorname{Tr}\left\langle z_{j}\right| \rho_{A B}\left|z_{j}\right\rangle
\end{array}
$$

- To answer this question, we must know

1. How to quantify the entanglement of $\rho_{A B}$ ?
2. How to quantify the uncertainty of $\omega_{X B}$ and $\tau_{Z B}$ ?

- Uncertainty relation in the presence of memory (UR) ${ }^{2}$ $\mathrm{H}(X \mid B)_{\omega}+\mathrm{H}(Z \mid B)_{\tau} \geqslant \log d+\mathrm{H}(A \mid B)_{\rho}$


## Uncertainty relation (in the presence of memory)

- How much can the entanglement reduce uncertainty?
- That is, what if Bob prepares an arbitrary state $\rho_{A B}$ ?
- Measuring $\rho_{A}$ with $\mathbb{X} / \mathbb{Z}$, Alice gets two cq. states

$$
\begin{aligned}
\omega_{X B} & =\sum_{i} p_{i}\left|x_{i}\right\rangle\left\langle x_{i}\right| \otimes \omega_{i}^{B},
\end{aligned} \quad p_{i}=\operatorname{Tr}\left\langle x_{i}\right| \rho_{A B}\left|x_{i}\right\rangle, ~ 子 q_{j} q_{j}\left|z_{j}\right\rangle\left\langle z_{j}\right| \otimes \tau_{j}^{B}, \quad q_{j}=\operatorname{Tr}\left\langle z_{j}\right| \rho_{A B}\left|z_{j}\right\rangle, ~ l
$$

- To answer this question, we must know

1. How to quantify the entanglement of $\rho_{A B}$ ?
2. How to quantify the uncertainty of $\omega_{X B}$ and $\tau_{Z B}$ ?

- Uncertainty relation in the presence of memory (UR) ${ }^{2}$

$$
\mathrm{H}(X \mid B)_{\omega}+\mathrm{H}(Z \mid B)_{\tau} \geqslant \log d+\mathrm{H}(A \mid B)_{\rho}
$$

$\Rightarrow \mathrm{H}(A \mid B)_{\omega, \tau, \rho}$ is the conditional entropy of state $\omega, \tau$, and $\rho$ - $\mathrm{H}(A \mid B)$ quantifies the uncertainty about $A$ given knowledge of $B$

[^3]
## Uncertainty relation (in the presence of memory)

- How much can the entanglement reduce uncertainty?
- That is, what if Bob prepares an arbitrary state $\rho_{A B}$ ?
- Measuring $\rho_{A}$ with $\mathbb{X} / \mathbb{Z}$, Alice gets two cq. states

$$
\begin{array}{ll}
\omega_{X B}=\sum_{i} p_{i}\left|x_{i}\right\rangle\left\langle x_{i}\right| \otimes \omega_{i}^{B}, & p_{i}=\operatorname{Tr}\left\langle x_{i}\right| \rho_{A B}\left|x_{i}\right\rangle \\
\tau_{Z B}=\sum_{j} q_{j}\left|z_{j}\right\rangle\left\langle z_{j}\right| \otimes \tau_{j}^{B}, & q_{j}=\operatorname{Tr}\left\langle z_{j}\right| \rho_{A B}\left|z_{j}\right\rangle
\end{array}
$$

- To answer this question, we must know

1. How to quantify the entanglement of $\rho_{A B}$ ?
2. How to quantify the uncertainty of $\omega_{X B}$ and $\tau_{Z B}$ ?

- Uncertainty relation in the presence of memory (UR) ${ }^{2}$

$$
\mathrm{H}(X \mid B)_{\omega}+\mathrm{H}(Z \mid B)_{\tau} \geqslant \log d+\mathrm{H}(A \mid B)_{\rho}
$$

- $\mathrm{H}(A \mid B)_{\omega, \tau, \rho}$ is the conditional entropy of state $\omega$, $\tau$, and $\rho$

[^4]
## Uncertainty relation (in the presence of memory)

- How much can the entanglement reduce uncertainty?
- That is, what if Bob prepares an arbitrary state $\rho_{A B}$ ?
- Measuring $\rho_{A}$ with $\mathbb{X} / \mathbb{Z}$, Alice gets two cq. states

$$
\begin{array}{ll}
\omega_{X B}=\sum_{i} p_{i}\left|x_{i}\right\rangle\left\langle x_{i}\right| \otimes \omega_{i}^{B}, & p_{i}=\operatorname{Tr}\left\langle x_{i}\right| \rho_{A B}\left|x_{i}\right\rangle, \\
\tau_{Z B}=\sum_{j} q_{j}\left|z_{j}\right\rangle\left\langle z_{j}\right| \otimes \tau_{j}^{B}, & q_{j}=\operatorname{Tr}\left\langle z_{j}\right| \rho_{A B}\left|z_{j}\right\rangle,
\end{array}
$$

- To answer this question, we must know

1. How to quantify the entanglement of $\rho_{A B}$ ?
2. How to quantify the uncertainty of $\omega_{X B}$ and $\tau_{Z B}$ ?

- Uncertainty relation in the presence of memory (UR) ${ }^{2}$

$$
\mathrm{H}(X \mid B)_{\omega}+\mathrm{H}(Z \mid B)_{\tau} \geqslant \log d+\mathrm{H}(A \mid B)_{\rho}
$$

- $\mathrm{H}(A \mid B)_{\omega, \tau, \rho}$ is the conditional entropy of state $\omega$, $\tau$, and $\rho$
- $\mathrm{H}(A \mid B)$ quantifies the uncertainty about $A$ given knowledge of $B$

[^5]
## Ingredients of a uncertainty relation

$$
\mathrm{H}(X \mid B)_{\omega}+\mathrm{H}(Z \mid B)_{\tau} \geqslant \log d+\mathrm{H}(A \mid B)_{\rho}
$$

- Five ingredients of a general uncertainty relation Incompatible measurements: $\mathbb{X}$ and $\mathbb{Z}$ State being measured: bipartite state $\rho_{A B}$ Uncertainty measure: conditional entropy $\mathrm{H}(A \mid B)_{\omega, \tau}$ Uncertainty relation form: lower bound on sum of uncertainties Entanglement measure: conditional entropy $\mathrm{H}(A \mid B)_{\rho}$
- Our relation

Incompatible measurements: complete set of mutually unbiased measurements
State being measured: bipartite state $\rho_{A B}$
Uncertainty measure: conditional collision entropy $\mathrm{H}_{2}(A \mid B)_{w, \tau}$ Uncertainty relation form: an equality Entanglement measure: conditional collision entropy $\mathrm{H}_{2}(A \mid B)_{\rho}$

## Ingredients of a uncertainty relation

$$
\mathrm{H}(X \mid B)_{\omega}+\mathrm{H}(Z \mid B)_{\tau} \geqslant \log d+\mathrm{H}(A \mid B)_{\rho}
$$

- Five ingredients of a general uncertainty relation Incompatible measurements: $\mathbb{X}$ and $\mathbb{Z}$ State being measured: bipartite state $\rho_{A B}$ Uncertainty measure: conditional entropy $\mathrm{H}(A \mid B)_{\omega, \tau}$ Uncertainty relation form: lower bound on sum of uncertainties Entanglement measure: conditional entropy $\mathrm{H}(A \mid B)_{\rho}$
- Our relation

Incompatible measurements: complete set of mutually unbiased measurements
State being measured: bipartite state $\rho_{A B}$
Uncertainty measure: conditional collision entropy $\mathrm{H}_{2}(A \mid B)_{\omega, \tau}$ Uncertainty relation form: an equality Entanglement measure: conditional collision entropy $\mathrm{H}_{2}(A \mid B)_{\rho}$

## Mutually unbiased measurements

- Let $\mathcal{P}^{(1)}=\left\{P_{x}^{(1)}\right\}_{x \in[d]}$ and $\mathcal{P}^{(2)}=\left\{P_{x}^{(2)}\right\}_{x \in[d]}$ be two POVMs:

$$
\forall \theta=1,2, \quad P_{x}^{(\theta)} \geqslant 0, \quad \sum_{x} P_{x}^{(\theta)}=\mathbb{1}
$$

- They are mutually unbiased ${ }^{3}$ if for all $x, x^{\prime} \in[d], \theta=1,2$

- The efficiency parameter $\kappa$ satisfies $1 / d<\kappa \leqslant 1$
- $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \subset \Theta}$ forms a set of MUMs if they are nairwise unbiased
- A complete set of MUMs is a set of MUMs of size $d+1$
- A complete set of MUMs can be explicitly constructed ${ }^{3}$


## Mutually unbiased measurements

- Let $\mathcal{P}^{(1)}=\left\{P_{x}^{(1)}\right\}_{x \in[d]}$ and $\mathcal{P}^{(2)}=\left\{P_{x}^{(2)}\right\}_{x \in[d]}$ be two POVMs:

$$
\forall \theta=1,2, \quad P_{x}^{(\theta)} \geqslant 0, \quad \sum_{x} P_{x}^{(\theta)}=\mathbb{1}
$$

- They are mutually unbiased ${ }^{3}$ if for all $x, x^{\prime} \in[d], \theta=1,2$

$$
\begin{aligned}
\operatorname{Tr}\left[P_{x}^{(\theta)}\right] & =1, \quad \text { each operator is normalized } \\
\operatorname{Tr}\left[P_{x}^{(1)} P_{x}^{(2)}\right] & =\frac{1}{d}, \quad \text { two measurements are unbiased } \\
\operatorname{Tr}\left[P_{x}^{(\theta)} P_{x^{\prime}}^{(\theta)}\right] & =\delta_{x, x^{\prime}} \kappa+\left(1-\delta_{x, x^{\prime}}\right) \frac{1-\kappa}{d-1} .
\end{aligned}
$$

- The efficiency parameter $\kappa$ satisfies $1 / d<\kappa \leqslant 1$ - $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in \Theta}$ forms a set of MUMs if they are pairwise unbiased - A complete set of MUMs is a set of MUMs of size $d+1$ - A complete set of MUMs can be explicitly constructed ${ }^{3}$

[^6]
## Mutually unbiased measurements

- Let $\mathcal{P}^{(1)}=\left\{P_{x}^{(1)}\right\}_{x \in[d]}$ and $\mathcal{P}^{(2)}=\left\{P_{x}^{(2)}\right\}_{x \in[d]}$ be two POVMs:

$$
\forall \theta=1,2, \quad P_{x}^{(\theta)} \geqslant 0, \quad \sum_{x} P_{x}^{(\theta)}=\mathbb{1}
$$

- They are mutually unbiased ${ }^{3}$ if for all $x, x^{\prime} \in[d], \theta=1,2$

$$
\begin{aligned}
\operatorname{Tr}\left[P_{x}^{(\theta)}\right] & =1, \quad \text { each operator is normalized } \\
\operatorname{Tr}\left[P_{x}^{(1)} P_{x}^{(2)}\right] & =\frac{1}{d}, \quad \text { two measurements are unbiased } \\
\operatorname{Tr}\left[P_{x}^{(\theta)} P_{x^{\prime}}^{(\theta)}\right] & =\delta_{x, x^{\prime}} \kappa+\left(1-\delta_{x, x^{\prime}}\right) \frac{1-\kappa}{d-1} .
\end{aligned}
$$

- The efficiency parameter $\kappa$ satisfies $1 / d<\kappa \leqslant 1$
- $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in \Theta}$ forms a set of MUMs if they are pairwise unbiased - A complete set of MUMs is a set of MUMs of size $d+1$ - A complete set of MUMs can be explicitly constructed ${ }^{3}$

[^7]
## Mutually unbiased measurements

- Let $\mathcal{P}^{(1)}=\left\{P_{x}^{(1)}\right\}_{x \in[d]}$ and $\mathcal{P}^{(2)}=\left\{P_{x}^{(2)}\right\}_{x \in[d]}$ be two POVMs:

$$
\forall \theta=1,2, \quad P_{x}^{(\theta)} \geqslant 0, \quad \sum_{x} P_{x}^{(\theta)}=\mathbb{1}
$$

- They are mutually unbiased ${ }^{3}$ if for all $x, x^{\prime} \in[d], \theta=1,2$

$$
\begin{aligned}
\operatorname{Tr}\left[P_{x}^{(\theta)}\right] & =1, \quad \text { each operator is normalized } \\
\operatorname{Tr}\left[P_{x}^{(1)} P_{x}^{(2)}\right] & =\frac{1}{d}, \quad \text { two measurements are unbiased } \\
\operatorname{Tr}\left[P_{x}^{(\theta)} P_{x^{\prime}}^{(\theta)}\right] & =\delta_{x, x^{\prime}} \kappa+\left(1-\delta_{x, x^{\prime}}\right) \frac{1-\kappa}{d-1} .
\end{aligned}
$$

- The efficiency parameter $\kappa$ satisfies $1 / d<\kappa \leqslant 1$
- $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in \Theta}$ forms a set of MUMs if they are pairwise unbiased
$\square$ - A complete set of MUMs can be explicitly constructed ${ }^{3}$

[^8]
## Mutually unbiased measurements

- Let $\mathcal{P}^{(1)}=\left\{P_{x}^{(1)}\right\}_{x \in[d]}$ and $\mathcal{P}^{(2)}=\left\{P_{x}^{(2)}\right\}_{x \in[d]}$ be two POVMs:

$$
\forall \theta=1,2, \quad P_{x}^{(\theta)} \geqslant 0, \quad \sum_{x} P_{x}^{(\theta)}=\mathbb{1}
$$

- They are mutually unbiased ${ }^{3}$ if for all $x, x^{\prime} \in[d], \theta=1,2$

$$
\begin{aligned}
\operatorname{Tr}\left[P_{x}^{(\theta)}\right] & =1, \quad \text { each operator is normalized } \\
\operatorname{Tr}\left[P_{x}^{(1)} P_{x}^{(2)}\right] & =\frac{1}{d}, \quad \text { two measurements are unbiased } \\
\operatorname{Tr}\left[P_{x}^{(\theta)} P_{x^{\prime}}^{(\theta)}\right] & =\delta_{x, x^{\prime}} \kappa+\left(1-\delta_{x, x^{\prime}}\right) \frac{1-\kappa}{d-1} .
\end{aligned}
$$

- The efficiency parameter $\kappa$ satisfies $1 / d<\kappa \leqslant 1$
- $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in \Theta}$ forms a set of MUMs if they are pairwise unbiased
- A complete set of MUMs is a set of MUMs of size $d+1$
- A complete set of MUMs can be explicitly constructed ${ }^{3}$

[^9]
## Mutually unbiased measurements

- Let $\mathcal{P}^{(1)}=\left\{P_{x}^{(1)}\right\}_{x \in[d]}$ and $\mathcal{P}^{(2)}=\left\{P_{x}^{(2)}\right\}_{x \in[d]}$ be two POVMs:

$$
\forall \theta=1,2, \quad P_{x}^{(\theta)} \geqslant 0, \quad \sum_{x} P_{x}^{(\theta)}=\mathbb{1}
$$

- They are mutually unbiased ${ }^{3}$ if for all $x, x^{\prime} \in[d], \theta=1,2$

$$
\begin{aligned}
\operatorname{Tr}\left[P_{x}^{(\theta)}\right] & =1, \quad \text { each operator is normalized } \\
\operatorname{Tr}\left[P_{x}^{(1)} P_{x}^{(2)}\right] & =\frac{1}{d}, \quad \text { two measurements are unbiased } \\
\operatorname{Tr}\left[P_{x}^{(\theta)} P_{x^{\prime}}^{(\theta)}\right] & =\delta_{x, x^{\prime}} \kappa+\left(1-\delta_{x, x^{\prime}}\right) \frac{1-\kappa}{d-1} .
\end{aligned}
$$

- The efficiency parameter $\kappa$ satisfies $1 / d<\kappa \leqslant 1$
- $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in \Theta}$ forms a set of MUMs if they are pairwise unbiased
- A complete set of MUMs is a set of MUMs of size $d+1$
- A complete set of MUMs can be explicitly constructed ${ }^{3}$

[^10]
## Conditional collision entropy

- Let $\rho_{A B}$ be a quantum state on system $A B$
- The conditional collision entropy is defined as $^{4}$

$$
\mathrm{H}_{2}(A \mid B)_{\rho}=-\log \operatorname{Tr}\left[\rho_{A B}\left(\mathbb{1}_{A} \otimes \rho_{B}\right)^{-1 / 2} \rho_{A B}\left(\mathbb{1}_{A} \otimes \rho_{B}\right)^{-1 / 2}\right]
$$

$\Rightarrow \mathbb{1}_{A}$ is the identity operator

- $-\log d \leqslant \mathrm{H}_{2}(A \mid B)_{\rho} \leqslant \log d$
- For separable states $\sigma_{A B}, \mathrm{H}_{2}(A \mid B)_{\sigma} \geqslant 0^{5}$
$\Rightarrow \mathrm{H}_{2}(A \mid B)_{\rho}<0 \Rightarrow \rho_{A B}$ must be entangled
- Trivializing system $B\left(\rho_{B}=1\right)$, we get the collision entropy

$$
\mathrm{H}_{2}(A)_{\rho}=-\log \operatorname{Tr} \rho_{A}^{2}
$$

[^11]
## Conditional collision entropy

- Let $\rho_{A B}$ be a quantum state on system $A B$
- The conditional collision entropy is defined as $^{4}$

$$
\mathrm{H}_{2}(A \mid B)_{\rho}=-\log \operatorname{Tr}\left[\rho_{A B}\left(\mathbb{1}_{A} \otimes \rho_{B}\right)^{-1 / 2} \rho_{A B}\left(\mathbb{1}_{A} \otimes \rho_{B}\right)^{-1 / 2}\right]
$$

- $\mathbb{1}_{A}$ is the identity operator
- $-\log d \leqslant \mathrm{H}_{2}(A \mid B)_{\rho} \leqslant \log d$
- For separable states $\sigma_{A B}, \mathrm{H}_{2}(A \mid B)_{\sigma} \geqslant 0^{5}$
- $\mathrm{H}_{2}(A \mid B)_{\rho}<0 \Rightarrow \rho_{A B}$ must be entangled
- Trivializing system $B\left(\rho_{B}=1\right)$, we get the collision entropy

$$
\mathrm{H}_{2}(A)_{\rho}=-\log \operatorname{Tr} \rho_{A}^{2}
$$

[^12]
## Conditional collision entropy

- Let $\rho_{A B}$ be a quantum state on system $A B$
- The conditional collision entropy is defined as $^{4}$

$$
\mathrm{H}_{2}(A \mid B)_{\rho}=-\log \operatorname{Tr}\left[\rho_{A B}\left(\mathbb{1}_{A} \otimes \rho_{B}\right)^{-1 / 2} \rho_{A B}\left(\mathbb{1}_{A} \otimes \rho_{B}\right)^{-1 / 2}\right]
$$

- $\mathbb{1}_{A}$ is the identity operator
- $-\log d \leqslant \mathrm{H}_{2}(A \mid B)_{\rho} \leqslant \log d$
- For separable states $\sigma_{A B}, \mathrm{H}_{2}(A \mid B)_{\sigma} \geqslant 0^{5}$
- $\mathrm{H}_{2}(A \mid B)_{\rho}<0 \Rightarrow \rho_{A B}$ must be entangled
- Trivializing system $B\left(\rho_{B}=1\right)$, we get the collision entropy

$$
\mathrm{H}_{2}(A)_{\rho}=-\log \operatorname{Tr} \rho_{A}^{2}
$$

[^13]
## Conditional collision entropy

- Let $\rho_{A B}$ be a quantum state on system $A B$
- The conditional collision entropy is defined as $^{4}$

$$
\mathrm{H}_{2}(A \mid B)_{\rho}=-\log \operatorname{Tr}\left[\rho_{A B}\left(\mathbb{1}_{A} \otimes \rho_{B}\right)^{-1 / 2} \rho_{A B}\left(\mathbb{1}_{A} \otimes \rho_{B}\right)^{-1 / 2}\right]
$$

- $\mathbb{1}_{A}$ is the identity operator
- $-\log d \leqslant \mathrm{H}_{2}(A \mid B)_{\rho} \leqslant \log d$
- For separable states $\sigma_{A B}, \mathrm{H}_{2}(A \mid B)_{\sigma} \geqslant 0^{5}$
- $\mathrm{H}_{2}(A \mid B)_{\rho}<0 \Rightarrow \rho_{A B}$ must be entangled
- Trivializing system $B\left(\rho_{B}=1\right)$, we get the collision entropy

$$
\mathrm{H}_{2}(\Lambda) \rho=-\log \operatorname{Tr} p_{\Lambda}^{2}
$$

[^14]
## Conditional collision entropy

- Let $\rho_{A B}$ be a quantum state on system $A B$
- The conditional collision entropy is defined as $^{4}$

$$
\mathrm{H}_{2}(A \mid B)_{\rho}=-\log \operatorname{Tr}\left[\rho_{A B}\left(\mathbb{1}_{A} \otimes \rho_{B}\right)^{-1 / 2} \rho_{A B}\left(\mathbb{1}_{A} \otimes \rho_{B}\right)^{-1 / 2}\right]
$$

- $\mathbb{1}_{A}$ is the identity operator
- $-\log d \leqslant \mathrm{H}_{2}(A \mid B)_{\rho} \leqslant \log d$
- For separable states $\sigma_{A B}, \mathrm{H}_{2}(A \mid B)_{\sigma} \geqslant 0^{5}$
- $\mathrm{H}_{2}(A \mid B)_{\rho}<0 \Rightarrow \rho_{A B}$ must be entangled
- Trivializing system $B\left(\rho_{B}=1\right)$, we get the collision entropy


[^15]
## Conditional collision entropy

- Let $\rho_{A B}$ be a quantum state on system $A B$
- The conditional collision entropy is defined as $^{4}$

$$
\mathrm{H}_{2}(A \mid B)_{\rho}=-\log \operatorname{Tr}\left[\rho_{A B}\left(\mathbb{1}_{A} \otimes \rho_{B}\right)^{-1 / 2} \rho_{A B}\left(\mathbb{1}_{A} \otimes \rho_{B}\right)^{-1 / 2}\right]
$$

- $\mathbb{1}_{A}$ is the identity operator
- $-\log d \leqslant \mathrm{H}_{2}(A \mid B)_{\rho} \leqslant \log d$
- For separable states $\sigma_{A B}, \mathrm{H}_{2}(A \mid B)_{\sigma} \geqslant 0^{5}$
- $\mathrm{H}_{2}(A \mid B)_{\rho}<0 \Rightarrow \rho_{A B}$ must be entangled
- Trivializing system $B\left(\rho_{B}=1\right)$, we get the collision entropy

$$
\mathrm{H}_{2}(A)_{\rho}=-\log \operatorname{Tr} \rho_{A}^{2}
$$

[^16]
## Outline

```
Preliminary
    Uncertainty relation
    Mutually unbiased measurements (MUM)
    Conditional collision entropy
```

An equality relation for complete set of MUMs

Implications of the equality relation
Guessing game
Uncertainty relation
Entanglement detection

Open Problems and Summaries
The CQC conjecture
Summary

## Post-measurement state for a MUM

- Let $\mathcal{P}^{(\theta)}=\left\{P_{x}^{(\theta)}\right\}_{x \in[d]}$ be a MUM in $A$
- Measuring $\rho_{A B}$ on $A$ by $\mathcal{P}^{(\theta)}$, we get a cq. state

$$
\begin{equation*}
\omega_{X^{(\theta)} B}=\sum_{x=1}^{d}|x\rangle\left\langle\left. x\right|_{X} \otimes \operatorname{Tr}_{A}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right]\right. \tag{1}
\end{equation*}
$$

- Register $X$ stores the measurement outcome
- $\operatorname{Tr}_{A}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right]$ is the post-measurement state (unnormalized) left on system $B$
- $\operatorname{Tr}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right]$ is probability that the outcome is $x$


## Post-measurement state for a MUM

- Let $\mathcal{P}^{(\theta)}=\left\{P_{x}^{(\theta)}\right\}_{x \in[d]}$ be a MUM in $A$
- Measuring $\rho_{A B}$ on $A$ by $\mathcal{P}^{(\theta)}$, we get a cq. state

$$
\begin{equation*}
\omega_{X^{(\theta)} B}=\sum_{x=1}^{d}|x\rangle\left\langle\left. x\right|_{X} \otimes \operatorname{Tr}_{A}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right]\right. \tag{1}
\end{equation*}
$$

- Register $X$ stores the measurement outcome
- $\operatorname{Tr}_{A}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right]$ is the post-measurement state (unnormalized) left on system $B$
- $\operatorname{Tr}\left[\left(P_{r}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A R}\right]$ is probability that the outcome is $x$


## Post-measurement state for a MUM

- Let $\mathcal{P}^{(\theta)}=\left\{P_{x}^{(\theta)}\right\}_{x \in[d]}$ be a MUM in $A$
- Measuring $\rho_{A B}$ on $A$ by $\mathcal{P}^{(\theta)}$, we get a cq. state

$$
\begin{equation*}
\omega_{X^{(\theta)} B}=\sum_{x=1}^{d}|x\rangle\left\langle\left. x\right|_{X} \otimes \operatorname{Tr}_{A}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right]\right. \tag{1}
\end{equation*}
$$

- Register $X$ stores the measurement outcome
- $\operatorname{Tr}_{A}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right]$ is the post-measurement state (unnormalized) left on system $B$
$\Rightarrow \operatorname{Tr}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right]$ is probability that the outcome is $x$


## Post-measurement state for a MUM

- Let $\mathcal{P}^{(\theta)}=\left\{P_{x}^{(\theta)}\right\}_{x \in[d]}$ be a MUM in $A$
- Measuring $\rho_{A B}$ on $A$ by $\mathcal{P}^{(\theta)}$, we get a cq. state

$$
\begin{equation*}
\omega_{X^{(\theta)} B}=\sum_{x=1}^{d}|x\rangle\left\langle\left. x\right|_{X} \otimes \operatorname{Tr}_{A}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right]\right. \tag{1}
\end{equation*}
$$

- Register $X$ stores the measurement outcome
- $\operatorname{Tr}_{A}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right]$ is the post-measurement state (unnormalized) left on system $B$
- $\operatorname{Tr}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right]$ is probability that the outcome is $x$


## Post-measurement state for complete set of MUMs

- Let $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in[d+1]}$ be a complete set of MUMs on system $A$
- Define the following cq. state
$\omega_{X B \Theta}=\frac{1}{d+1} \sum_{\theta=1}^{d+1} \sum_{x=1}^{d}|x\rangle\left\langle\left. x\right|_{X} \otimes \operatorname{Tr}_{A}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right] \otimes \mid \theta\right\rangle\left\langle\left.\theta\right|_{\Theta}\right.$ (2)
- $\Theta$ indicates which MUM has been performed
- $\omega_{X B \Theta}$ is a uniform mixing of $\omega_{X^{(\theta)} B_{B}}: \omega_{X B \Theta=\theta}=\omega_{X(\theta)_{B}}$
- Conditional collision entropy of $\omega_{X B \Theta}$, with partition $X: B \Theta$

where $\widetilde{\rho}_{A B}=\rho_{B}^{-1 / 4} \rho_{A B} \rho_{B}^{-1 / 4}$


## Post-measurement state for complete set of MUMs

- Let $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in[d+1]}$ be a complete set of MUMs on system $A$
- Define the following cq. state

$$
\begin{equation*}
\omega_{X B \Theta}=\frac{1}{d+1} \sum_{\theta=1}^{d+1} \sum_{x=1}^{d}|x\rangle\left\langle\left. x\right|_{X} \otimes \operatorname{Tr}_{A}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right] \otimes \mid \theta\right\rangle\left\langle\left.\theta\right|_{\Theta}\right. \tag{2}
\end{equation*}
$$

- $\Theta$ indicates which MUM has been performed
- $\omega_{X B \Theta}$ is a uniform mixing of $\omega_{X^{(\theta)} B}: \omega_{X B \Theta=\theta}=\omega_{X^{(\theta)} B}$
Conditional collision entropy of $\omega_{X B \Theta}$, with partition $X: B \Theta$

where $\widetilde{\rho}_{A B}=\rho_{B}^{-1 / 4} \rho_{A B} \rho_{B}^{-1 / 4}$


## Post-measurement state for complete set of MUMs

- Let $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in[d+1]}$ be a complete set of MUMs on system $A$
- Define the following cq. state

$$
\begin{equation*}
\omega_{X B \Theta}=\frac{1}{d+1} \sum_{\theta=1}^{d+1} \sum_{x=1}^{d}|x\rangle\left\langle\left. x\right|_{X} \otimes \operatorname{Tr}_{A}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right] \otimes \mid \theta\right\rangle\left\langle\left.\theta\right|_{\Theta}\right. \tag{2}
\end{equation*}
$$

- $\Theta$ indicates which MUM has been performed
- $\omega_{X B \Theta}$ is a uniform mixing of $\omega_{X^{(\theta)} B}: \omega_{X B \Theta=\theta}=\omega_{X(\theta) B}$
- Conditional collision entropy of $\omega_{X B \Theta}$, with partition $X: B \Theta$

where $\tilde{\rho}_{A B}=\rho_{B}^{-1 / 4} \rho_{A B} \rho_{B}^{-1 / 4}$


## Post-measurement state for complete set of MUMs

- Let $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in[d+1]}$ be a complete set of MUMs on system $A$
- Define the following cq. state

$$
\begin{equation*}
\omega_{X B \Theta}=\frac{1}{d+1} \sum_{\theta=1}^{d+1} \sum_{x=1}^{d}|x\rangle\left\langle\left. x\right|_{X} \otimes \operatorname{Tr}_{A}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right] \otimes \mid \theta\right\rangle\left\langle\left.\theta\right|_{\Theta}\right. \tag{2}
\end{equation*}
$$

- $\Theta$ indicates which MUM has been performed
- $\omega_{X B \Theta}$ is a uniform mixing of $\omega_{X^{(\theta)} B}: \omega_{X B \Theta=\theta}=\omega_{X^{(\theta)} B}$

where $\widetilde{\rho}_{A B}=\rho_{B}^{-1 / 4} \rho_{A B} \rho_{B}^{-1 / 4}$


## Post-measurement state for complete set of MUMs

- Let $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in[d+1]}$ be a complete set of MUMs on system $A$
- Define the following cq. state

$$
\begin{equation*}
\omega_{X B \Theta}=\frac{1}{d+1} \sum_{\theta=1}^{d+1} \sum_{x=1}^{d}|x\rangle\left\langle\left. x\right|_{X} \otimes \operatorname{Tr}_{A}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right] \otimes \mid \theta\right\rangle\left\langle\left.\theta\right|_{\Theta}\right. \tag{2}
\end{equation*}
$$

- $\Theta$ indicates which MUM has been performed
- $\omega_{X B \Theta}$ is a uniform mixing of $\omega_{X^{(\theta)} B}: \omega_{X B \Theta=\theta}=\omega_{X^{(\theta)} B}$
- Conditional collision entropy of $\omega_{X B \Theta}$, with partition $X: B \Theta$

$$
\mathrm{H}_{2}(X \mid B \Theta)_{\omega}=-\log \left(\frac{1}{d+1} \sum_{\theta, x} \operatorname{Tr}_{B}\left\{\operatorname{Tr}_{A}\left[P_{x}^{(\theta)} \widetilde{\rho}_{A B}\right]^{2}\right\}\right)
$$

where $\widetilde{\rho}_{A B}=\rho_{B}^{-1 / 4} \rho_{A B} \rho_{B}^{-1 / 4}$

## Theorem (An equality relation for complete set of MUMs)

 Let $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in[d+1]}$ be a complete set of MUMs on system A. For arbitrary quantum state $\rho_{A B}$, it holds that$$
\begin{equation*}
\mathrm{H}_{2}(A \mid B \Theta)_{\omega}=\log (d+1)-\log \left(f(\kappa)+g(\kappa) 2^{-\mathrm{H}_{2}(A \mid B)_{\rho}}\right), \tag{3}
\end{equation*}
$$

where $\omega_{X B \Theta}$ is defined in Eq. (2), and the coefficients are given by

$$
f(\kappa)=1+\frac{1-\kappa}{d-1}, \quad g(\kappa)=\frac{\kappa d-1}{d-1} .
$$

- When $\kappa=1$, Eq. (3) recovers the main result of [2] ${ }^{6}$

$$
\mathrm{H}_{2}(A \mid B \Theta)_{\omega}=\log (d+1)-\log \left(1+2^{-\mathrm{H}_{2}(A \mid B)_{\rho}}\right)
$$

[^17]
## Outline



## Pretty-good state discrimination

- State discrimination: Let $\mathcal{S}=\left\{p_{i}, \rho_{i}\right\}$ be a state ensemble. Sample $\sigma$ from $\mathcal{S}$. What is the index $i$ of $\sigma$ ?

measurement outcome is $i$, then assert $\sigma \equiv \rho_{i}$

- $\mathcal{S}$ is equivalent to a cq. state $\rho_{X B}=\sum_{i} p_{i}|i\rangle\langle i| \otimes \rho_{i}^{B}$
- Operational interpretation of the conditional collision entropy ${ }^{9}$

$$
\mathrm{P}^{\mathrm{pg}}(X \mid B)_{\rho} \equiv \mathrm{P}^{\mathrm{pg}}(\mathcal{S})=2^{-\mathrm{H}_{2}(X \mid B)_{\rho}}
$$

## Pretty-good state discrimination

- State discrimination: Let $\mathcal{S}=\left\{p_{i}, \rho_{i}\right\}$ be a state ensemble. Sample $\sigma$ from $\mathcal{S}$. What is the index $i$ of $\sigma$ ?
- Perform a measurement $\mathcal{M}=\left\{M_{i}\right\}$ to extract index: if the measurement outcome is $i$, then assert $\sigma \equiv \rho_{i}$
- Finding optimal measurement is a complex optimization problem ${ }^{7}$
- Pretty-good measurement ${ }^{8}$

- Pretty-good guessing probability

- $\mathcal{S}$ is equivalent to a cq. state $\rho_{X B}=\sum_{i} p_{i}|i\rangle\langle i| \otimes \rho_{i}^{B}$
- Operational interpretation of the conditional collision entropy ${ }^{9}$



## Pretty-good state discrimination

- State discrimination: Let $\mathcal{S}=\left\{p_{i}, \rho_{i}\right\}$ be a state ensemble. Sample $\sigma$ from $\mathcal{S}$. What is the index $i$ of $\sigma$ ?
- Perform a measurement $\mathcal{M}=\left\{M_{i}\right\}$ to extract index: if the measurement outcome is $i$, then assert $\sigma \equiv \rho_{i}$
- Finding optimal measurement is a complex optimization problem ${ }^{7}$
- Pretty-good measurement ${ }^{8}$
- Pretty-good guessing probability

- $\mathcal{S}$ is equivalent to a cq. state $\rho_{X B}=\sum_{i} p_{i}|i\rangle\langle i| \otimes \rho_{i}^{B}$
- Operational interpretation of the conditional collision entropy ${ }^{9}$

[^18]
## Pretty-good state discrimination

- State discrimination: Let $\mathcal{S}=\left\{p_{i}, \rho_{i}\right\}$ be a state ensemble. Sample $\sigma$ from $\mathcal{S}$. What is the index $i$ of $\sigma$ ?
- Perform a measurement $\mathcal{M}=\left\{M_{i}\right\}$ to extract index: if the measurement outcome is $i$, then assert $\sigma \equiv \rho_{i}$
- Finding optimal measurement is a complex optimization problem ${ }^{7}$
- Pretty-good measurement ${ }^{8} \mathcal{M}^{\mathrm{pg}}=\left\{M_{i}\right\}$ of $\mathcal{S}$ :

$$
M_{i}=\rho^{-1 / 2}\left(p_{i} \rho_{i}\right) \rho^{-1 / 2}, \text { where } \rho=\sum_{i} p_{i} \rho_{i}
$$

- Pretty-good guessing probability



# - Operational interpretation of the conditional collision entropy ${ }^{9}$ 

[^19]
## Pretty-good state discrimination

- State discrimination: Let $\mathcal{S}=\left\{p_{i}, \rho_{i}\right\}$ be a state ensemble. Sample $\sigma$ from $\mathcal{S}$. What is the index $i$ of $\sigma$ ?
- Perform a measurement $\mathcal{M}=\left\{M_{i}\right\}$ to extract index: if the measurement outcome is $i$, then assert $\sigma \equiv \rho_{i}$
- Finding optimal measurement is a complex optimization problem ${ }^{7}$
- Pretty-good measurement ${ }^{8} \mathcal{M}^{\mathrm{pg}}=\left\{M_{i}\right\}$ of $\mathcal{S}$ :

$$
M_{i}=\rho^{-1 / 2}\left(p_{i} \rho_{i}\right) \rho^{-1 / 2} \text {, where } \rho=\sum_{i} p_{i} \rho_{i}
$$

- Pretty-good guessing probability

$$
\mathrm{P}^{\mathrm{pg}}(\mathcal{S})=\sum_{i} p_{i}^{2} \operatorname{Tr}\left[\rho^{-1 / 2} \rho_{i} \rho^{-1 / 2} \rho_{i}\right]
$$

- $\mathcal{S}$ is equivalent to a cq. s
- Operational interpretation of the conditional collision entropy ${ }^{9}$

[^20]
## Pretty-good state discrimination

- State discrimination: Let $\mathcal{S}=\left\{p_{i}, \rho_{i}\right\}$ be a state ensemble. Sample $\sigma$ from $\mathcal{S}$. What is the index $i$ of $\sigma$ ?
- Perform a measurement $\mathcal{M}=\left\{M_{i}\right\}$ to extract index: if the measurement outcome is $i$, then assert $\sigma \equiv \rho_{i}$
- Finding optimal measurement is a complex optimization problem ${ }^{7}$
- Pretty-good measurement ${ }^{8} \mathcal{M}^{\mathrm{pg}}=\left\{M_{i}\right\}$ of $\mathcal{S}$ :

$$
M_{i}=\rho^{-1 / 2}\left(p_{i} \rho_{i}\right) \rho^{-1 / 2} \text {, where } \rho=\sum_{i} p_{i} \rho_{i}
$$

- Pretty-good guessing probability

$$
\mathrm{P}^{\mathrm{pg}}(\mathcal{S})=\sum_{i} p_{i}^{2} \operatorname{Tr}\left[\rho^{-1 / 2} \rho_{i} \rho^{-1 / 2} \rho_{i}\right]
$$

- $\mathcal{S}$ is equivalent to a cq. state $\rho_{X B}=\sum_{i} p_{i}|i\rangle\langle i| \otimes \rho_{i}^{B}$

[^21]
## Pretty-good state discrimination

- State discrimination: Let $\mathcal{S}=\left\{p_{i}, \rho_{i}\right\}$ be a state ensemble. Sample $\sigma$ from $\mathcal{S}$. What is the index $i$ of $\sigma$ ?
- Perform a measurement $\mathcal{M}=\left\{M_{i}\right\}$ to extract index: if the measurement outcome is $i$, then assert $\sigma \equiv \rho_{i}$
- Finding optimal measurement is a complex optimization problem ${ }^{7}$
- Pretty-good measurement ${ }^{8} \mathcal{M}^{\mathrm{pg}}=\left\{M_{i}\right\}$ of $\mathcal{S}$ :

$$
M_{i}=\rho^{-1 / 2}\left(p_{i} \rho_{i}\right) \rho^{-1 / 2}, \text { where } \rho=\sum_{i} p_{i} \rho_{i}
$$

- Pretty-good guessing probability

$$
\mathrm{P}^{\mathrm{pg}}(\mathcal{S})=\sum_{i} p_{i}^{2} \operatorname{Tr}\left[\rho^{-1 / 2} \rho_{i} \rho^{-1 / 2} \rho_{i}\right]
$$

- $\mathcal{S}$ is equivalent to a cq. state $\rho_{X B}=\sum_{i} p_{i}|i\rangle\langle i| \otimes \rho_{i}^{B}$
- Operational interpretation of the conditional collision entropy ${ }^{9}$

$$
\mathrm{P}^{\mathrm{pg}}(X \mid B)_{\rho} \equiv \mathrm{P}^{\mathrm{pg}}(\mathcal{S})=2^{-\mathrm{H}_{2}(X \mid B)_{\rho}}
$$

[^22]
## Pretty-good guessing for a complete set of MUMs

- Each MUM induces a cq. state of the form

$$
\omega_{X^{(\theta)} B}=\sum_{x=1}^{d}|x\rangle\langle x| \otimes \operatorname{Tr}_{A}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right]
$$

- How well can Bob guess $x$ ?
- He can guess "pretty-good": $\mathrm{P}^{\mathrm{pg}}\left(X^{(\theta)} \mid B\right)_{\omega}$
- How well can Bob guess $r$ for a complete set of MUMs, on average? - Totally determined by the quantum collision entropy of $\rho_{A B}$

Lemma
Let $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in[d+1]}$ be a complete set of MUMs on system A. For arbitrary quantum state $\rho_{A B}$, it holds that


## Pretty-good guessing for a complete set of MUMs

- Each MUM induces a cq. state of the form

$$
\omega_{X^{(\theta)} B}=\sum_{x=1}^{d}|x\rangle\langle x| \otimes \operatorname{Tr}_{A}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right]
$$

- How well can Bob guess $x$ ?
- He can guess "pretty-good": $\mathrm{P}^{\mathrm{pg}}\left(X^{(\theta)} \mid B\right)_{\omega}$
- How well can Bob guess $x$ for a complete set of MUMs, on average? - Totally determined by the quantum collision entropy of $\rho_{A B}$

Lemma
Let $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in[d+1]}$ be a complete set of MUMs on system A. For arbitrary quantum state $\rho_{A B}$, it holds that


## Pretty-good guessing for a complete set of MUMs

- Each MUM induces a cq. state of the form

$$
\omega_{X^{(\theta)} B}=\sum_{x=1}^{d}|x\rangle\langle x| \otimes \operatorname{Tr}_{A}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right]
$$

- How well can Bob guess $x$ ?
- He can guess "pretty-good": $\mathrm{P}^{\mathrm{pg}}\left(X^{(\theta)} \mid B\right)_{\omega}$
- How well can Bob guess $x$ for a complete set of MUMs, on average?
- Totally determined by the quantum collision entropy of $\rho_{A B}$

Lemma
Let $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in[d+1]}$ be a complete set of MUMs on system A. For
arbitrary quantum state $\rho_{A B}$, it holds that

## Pretty-good guessing for a complete set of MUMs

- Each MUM induces a cq. state of the form

$$
\omega_{X^{(\theta)} B}=\sum_{x=1}^{d}|x\rangle\langle x| \otimes \operatorname{Tr}_{A}\left[\left(P_{x}^{(\theta)} \otimes \mathbb{1}_{B}\right) \rho_{A B}\right]
$$

- How well can Bob guess $x$ ?
- He can guess "pretty-good": $\mathrm{P}^{\mathrm{pg}}\left(X^{(\theta)} \mid B\right)_{\omega}$
- How well can Bob guess $x$ for a complete set of MUMs, on average?
- Totally determined by the quantum collision entropy of $\rho_{A B}$


## Lemma

Let $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in[d+1]}$ be a complete set of MUMs on system A. For arbitrary quantum state $\rho_{A B}$, it holds that

$$
\sum_{\theta=1}^{d+1} \mathrm{P}^{\mathrm{pg}}\left(X^{(\theta)} \mid B\right)_{\omega}=f(\kappa)+g(\kappa) 2^{-\mathrm{H}_{2}(A \mid B)_{\rho}}
$$

## Lower bound on sum of uncertainties

- Uncertainty relations are commonly expressed as lower bound on the sum of uncertainties

Lemma
Let $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in[d+1]}$ be a complete set of MUMs on system A. For arbitrary quantum state $\rho_{A B}$, it holds that

$$
\begin{equation*}
\frac{1}{d+1} \sum_{\theta=1}^{d+1} \mathrm{H}_{2}\left(X^{(\theta)} \mid B\right)_{\omega} \geqslant \log (d+1)-\log \left(f(\kappa)+g(\kappa) 2^{-\mathrm{H}_{2}(A \mid B)_{\rho}}\right) \tag{4}
\end{equation*}
$$

- Trivializing system $B$, Eq. (4) reduces to

- This is a uncertainty relation without memory
- Recovers a special case $(\alpha-2)$ of Proposition 3 in $[9]^{10}$


## Lower bound on sum of uncertainties

- Uncertainty relations are commonly expressed as lower bound on the sum of uncertainties

Lemma
Let $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in[d+1]}$ be a complete set of MUMs on system A. For arbitrary quantum state $\rho_{A B}$, it holds that

$$
\begin{equation*}
\frac{1}{d+1} \sum_{\theta=1}^{d+1} \mathrm{H}_{2}\left(X^{(\theta)} \mid B\right)_{\omega} \geqslant \log (d+1)-\log \left(f(\kappa)+g(\kappa) 2^{-\mathrm{H}_{2}(A \mid B)_{\rho}}\right), \tag{4}
\end{equation*}
$$

- Trivializing system $B$, Eq. (4) reduces to

$$
\frac{1}{d+1} \sum_{\theta=1}^{d+1} \mathrm{H}_{2}\left(X^{(\theta)}\right)_{\omega} \geqslant \log (d+1)-\log \left(f(\kappa)+g(\kappa) \operatorname{Tr}\left[\rho_{A}^{2}\right]\right)
$$

$\rightarrow$ This is a uncertainty relation without memory

- Recovers a special case $(\alpha=2)$ of Proposition 3 in $[9]^{10}$


## Lower bound on sum of uncertainties

- Uncertainty relations are commonly expressed as lower bound on the sum of uncertainties

Lemma
Let $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in[d+1]}$ be a complete set of MUMs on system A. For arbitrary quantum state $\rho_{A B}$, it holds that

$$
\begin{equation*}
\frac{1}{d+1} \sum_{\theta=1}^{d+1} \mathrm{H}_{2}\left(X^{(\theta)} \mid B\right)_{\omega} \geqslant \log (d+1)-\log \left(f(\kappa)+g(\kappa) 2^{-\mathrm{H}_{2}(A \mid B)_{\rho}}\right), \tag{4}
\end{equation*}
$$

- Trivializing system $B$, Eq. (4) reduces to

$$
\frac{1}{d+1} \sum_{\theta=1}^{d+1} \mathrm{H}_{2}\left(X^{(\theta)}\right)_{\omega} \geqslant \log (d+1)-\log \left(f(\kappa)+g(\kappa) \operatorname{Tr}\left[\rho_{A}^{2}\right]\right)
$$

- This is a uncertainty relation without memory
- Recovers a special case $(\alpha=2)$ of Proposition 3 in [9] ${ }^{10}$


## Lower bound on sum of uncertainties

- Uncertainty relations are commonly expressed as lower bound on the sum of uncertainties

Lemma
Let $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in[d+1]}$ be a complete set of MUMs on system A. For arbitrary quantum state $\rho_{A B}$, it holds that

$$
\begin{equation*}
\frac{1}{d+1} \sum_{\theta=1}^{d+1} \mathrm{H}_{2}\left(X^{(\theta)} \mid B\right)_{\omega} \geqslant \log (d+1)-\log \left(f(\kappa)+g(\kappa) 2^{-\mathrm{H}_{2}(A \mid B)_{\rho}}\right), \tag{4}
\end{equation*}
$$

- Trivializing system $B$, Eq. (4) reduces to

$$
\frac{1}{d+1} \sum_{\theta=1}^{d+1} \mathrm{H}_{2}\left(X^{(\theta)}\right)_{\omega} \geqslant \log (d+1)-\log \left(f(\kappa)+g(\kappa) \operatorname{Tr}\left[\rho_{A}^{2}\right]\right)
$$

- This is a uncertainty relation without memory
- Recovers a special case ( $\alpha=2$ ) of Proposition 3 in [9] ${ }^{10}$

[^23]
## An entanglement detection method

- Let $\left\{\mathcal{P}^{(\theta)}\right\}_{\theta \in[d+1]}$ be a complete set of MUMs on $A$
- Let $\left\{\mathcal{Q}^{(\theta)}\right\}_{\theta \in[d+1]}$ be an arbitrary set of $d+1$ measurements on $B$
- If Alice performs $\mathcal{P}^{(\theta)}$, Bob performs $\mathcal{Q}^{(\theta)}$. They get

$$
\omega_{X^{(\theta)} Y^{(\theta)}}=\sum_{x, y=1}^{d} \operatorname{Tr}\left[\left(P_{x}^{(\theta)} \otimes Q_{y}^{(\theta)}\right) \rho_{A B}\right]|x\rangle\langle x| \otimes|y\rangle\langle y| .
$$

- $\omega_{X^{(\theta)} Y^{(\theta)}}$ can be evaluated from measurement statistics

Lemma
For arbitrary separable quantum state $\rho_{A B}$, it holds that

$$
\frac{1}{d+1} \sum_{\theta=1}^{d+1} \mathrm{H}_{2}\left(X^{(\theta)} \mid Y^{(\theta)}\right)_{\omega} \geqslant \log (d+1)-\log (f(\kappa)+g(\kappa)) .
$$

## An entanglement detection method (cont.)

- How does the detection method work?
- Suppose now there exists a source producing states $\rho_{A B}$
- Alice and Bob sample from the source and gather statistics
- They estimate the joint distribution for each pair $\left\{\mathcal{P}^{(\theta)}, \mathcal{Q}^{(\theta)}\right\}$
- They evaluate the sum of (classical) conditional collision entropies
- According to the above lemma, the source is entangled if

$$
\begin{equation*}
\frac{1}{d+1} \sum_{\theta=1}^{d+1} \mathrm{H}_{2}\left(X^{(\theta)} \mid Y^{(\theta)}\right)_{\omega}<\log (d+1)-\log (f(\kappa)+g(\kappa)) \tag{5}
\end{equation*}
$$

- The choice of measurements $\left\{\mathcal{Q}^{(\theta)}\right\}$ on system $B$ is arbitrary
- For best detection criterion, minimize the LHS. of Eq. (5) by optimizing over all possible measurements $\left\{\mathcal{Q}^{(\theta)}\right\}$


## Outline

```
Preliminary
    Uncertainty relation
    Mutually unbiased measurements (MUM)
    Conditional collision entropy
An equality relation for complete set of MUMs
Implications of the equality relation
    Guessing game
    Uncertainty relation
    Entanglement detection
```

Open Problems and Summaries
The CQC conjecture Summary

A unified view


A unified view (cont.)


A unified view (cont.)


## CQC conjecture

- Let $\mathbb{X}^{A}$ and $\mathbb{Z}^{A}$ be complementary on A



## CQC conjecture

- Let $\mathbb{X}^{A}$ and $\mathbb{Z}^{A}$ be complementary on A
- Let $\mathbb{X}^{B}$ and $\mathbb{Z}^{B}$ be complementary on B

- The complementary-quantum correlation conjecture (CQC) ${ }^{11}$

- $\mathrm{I}(A: B)$ is the mutual information quantifying the correlation between $A$ and $B$


## CQC conjecture

- Let $\mathbb{X}^{A}$ and $\mathbb{Z}^{A}$ be complementary on A
- Let $\mathbb{X}^{B}$ and $\mathbb{Z}^{B}$ be complementary on B
- $\mathbb{X}^{A} \otimes \mathbb{X}^{B}$ and $\mathbb{Z}^{A} \otimes \mathbb{Z}^{B}$ induce two classical states

$$
\begin{aligned}
\omega_{X^{A} X^{B}} & =\sum_{i j} p_{i j}\left|x_{i}^{A}\right\rangle\left\langle x_{i}^{A}\right| \otimes\left|x_{j}^{B}\right\rangle\left\langle x_{j}^{B}\right| \\
p_{i j} & =\left\langle x_{i}^{A} x_{j}^{B}\right| \rho_{A B}\left|x_{i}^{A} x_{j}^{B}\right\rangle \\
\tau_{Z^{A} Z^{B}} & =\sum_{m n} q_{m n}\left|z_{m}^{A}\right\rangle\left\langle z_{m}^{A}\right| \otimes\left|z_{n}^{B}\right\rangle\left\langle z_{n}^{B}\right| \\
q_{m n} & =\left\langle z_{m}^{A} z_{n}^{B}\right| \rho_{A B}\left|z_{m}^{A} z_{n}^{B}\right\rangle
\end{aligned}
$$

- The complementary-quantum correlation conjecture (CQC) ${ }^{11}$



## CQC conjecture

- Let $\mathbb{X}^{A}$ and $\mathbb{Z}^{A}$ be complementary on A
- Let $\mathbb{X}^{B}$ and $\mathbb{Z}^{B}$ be complementary on B
- $\mathbb{X}^{A} \otimes \mathbb{X}^{B}$ and $\mathbb{Z}^{A} \otimes \mathbb{Z}^{B}$ induce two classical states

$$
\begin{aligned}
\omega_{X^{A} X^{B}} & =\sum_{i j} p_{i j}\left|x_{i}^{A}\right\rangle\left\langle x_{i}^{A}\right| \otimes\left|x_{j}^{B}\right\rangle\left\langle x_{j}^{B}\right| \\
p_{i j} & =\left\langle x_{i}^{A} x_{j}^{B}\right| \rho_{A B}\left|x_{i}^{A} x_{j}^{B}\right\rangle \\
\tau_{Z^{A} Z^{B}} & =\sum_{m n} q_{m n}\left|z_{m}^{A}\right\rangle\left\langle z_{m}^{A}\right| \otimes\left|z_{n}^{B}\right\rangle\left\langle z_{n}^{B}\right| \\
q_{m n} & =\left\langle z_{m}^{A} z_{n}^{B}\right| \rho_{A B}\left|z_{m}^{A} z_{n}^{B}\right\rangle
\end{aligned}
$$

- The complementary-quantum correlation conjecture (CQC) ${ }^{11}$

$$
\mathrm{I}\left(X^{A}: X^{B}\right)_{\omega}+\mathrm{I}\left(Z^{A}: Z^{B}\right)_{\tau} \leqslant \mathrm{I}(A: B)_{\rho}
$$

- $\mathrm{I}(A: B)$ is the mutual information quantifying the correlation
between $A$ and $B$


## CQC conjecture

- Let $\mathbb{X}^{A}$ and $\mathbb{Z}^{A}$ be complementary on A
- Let $\mathbb{X}^{B}$ and $\mathbb{Z}^{B}$ be complementary on B
- $\mathbb{X}^{A} \otimes \mathbb{X}^{B}$ and $\mathbb{Z}^{A} \otimes \mathbb{Z}^{B}$ induce two classical states

$$
\begin{aligned}
\omega_{X^{A} X^{B}} & =\sum_{i j} p_{i j}\left|x_{i}^{A}\right\rangle\left\langle x_{i}^{A}\right| \otimes\left|x_{j}^{B}\right\rangle\left\langle x_{j}^{B}\right| \\
p_{i j} & =\left\langle x_{i}^{A} x_{j}^{B}\right| \rho_{A B}\left|x_{i}^{A} x_{j}^{B}\right\rangle \\
\tau_{Z^{A} Z^{B}} & =\sum_{m n} q_{m n}\left|z_{m}^{A}\right\rangle\left\langle z_{m}^{A}\right| \otimes\left|z_{n}^{B}\right\rangle\left\langle z_{n}^{B}\right| \\
q_{m n} & =\left\langle z_{m}^{A} z_{n}^{B}\right| \rho_{A B}\left|z_{m}^{A} z_{n}^{B}\right\rangle
\end{aligned}
$$

- The complementary-quantum correlation conjecture (CQC) ${ }^{11}$

$$
\mathrm{I}\left(X^{A}: X^{B}\right)_{\omega}+\mathrm{I}\left(Z^{A}: Z^{B}\right)_{\tau} \leqslant \mathrm{I}(A: B)_{\rho}
$$

- $\mathrm{I}(A: B)$ is the mutual information quantifying the correlation between $A$ and $B$

[^24]Our work fits into the unified view


## Summary

- What have done?
- An equality relation for complete set of MUMs
- Conditional collision entropy as uncertainty measure
- Some corollaries from the equality relation

1. Bound on pretty-good guessing probabilities
2. An uncertainty relation expressed as sum of uncertainties
3. An entanglement detection method

- What to do?
- Bounds on pretty-good guessing probabilities for a set of MUMs
- Uncertainty relations for a set of MUMs
- Finally, the CQC conjecture!


## Summary

- What have done?
- An equality relation for complete set of MUMs
- Conditional collision entropy as uncertainty measure
- Some corollaries from the equality relation

1. Bound on pretty-good guessing probabilities
2. An uncertainty relation expressed as sum of uncertainties
3. An entanglement detection method

- What to do?
- Bounds on pretty-good guessing probabilities for a set of MUMs
- Uncertainty relations for a set of MUMs
- Finally, the CQC conjecture!

Q \& A

## Thank you!

Any questions ?

## Bibliography I

圊
Joonwoo Bae and Leong－Chuan Kwek．＂Quantum state discrimination and its applications＂．In：Journal of Physics A： Mathematical and Theoretical 48.8 （2015），p． 083001.
囯 Mario Berta，Patrick J Coles，and Stephanie Wehner．
＂Entanglement－assisted guessing of complementary measurement outcomes＂．In：Physical Review A 90.6 （2014），p． 062127.
囯 Mario Berta et al．＂The uncertainty principle in the presence of quantum memory＂．In：Nature Physics 6.9 （2010），pp．659－662．


Harry Buhrman et al．＂Possibility，impossibility，and cheat sensitivity of quantum－bit string commitment＂．In：Physical Review A 78.2 （2008），p． 022316.
國 Patrick J Coles et al．＂Entropic uncertainty relations and their applications＂．In：Reviews of Modern Physics 89.1 （2017），
p． 015002.

## Bibliography II

# Matthew A Graydon and DM Appleby．＂Quantum conical designs＂． In：Journal of Physics A：Mathematical and Theoretical 49.8 （2016），p． 085301. 

國 Paul Hausladen and William K Wootters．＂A＇pretty good＇ measurement for distinguishing quantum states＂．In：Journal of Modern Optics 41.12 （1994），pp．2385－2390．
甸 Amir Kalev and Gilad Gour．＂Mutually unbiased measurements in finite dimensions＂．In：New Journal of Physics 16.5 （2014）， p． 053038.
R Alexey E Rastegin．＂On uncertainty relations and entanglement detection with mutually unbiased measurements＂．In：Open Systems \＆Information Dynamics 22.01 （2015），p． 1550005.
䍰 James Schneeloch，Curtis J Broadbent，and John C Howell． ＂Uncertainty Relation for Mutual Information＂．In：Physical Review A 90.6 （2014），p． 062119.
R Marco Tomamichel．Quantum Information Processing with Finite Resources：Mathematical Foundations．Vol．5．Springer， 2015.


[^0]:    ${ }^{1}$ Patrick J Coles et al. "Entropic uncertainty relations and their applications". In: Reviews of Modern Physics 89.1 (2017), p. 015002.

[^1]:    ${ }^{1}$ Patrick J Coles et al. "Entropic uncertainty relations and their applications". In: Reviews of Modern Physics 89.1 (2017), p. 015002.

[^2]:    ${ }^{1}$ Patrick J Coles et al. "Entropic uncertainty relations and their applications". In: Reviews of Modern Physics 89.1 (2017), p. 015002.

[^3]:    ${ }^{2}$ Mario Berta et al. "The uncertainty principle in the presence of quantum memory". In: Nature Physics 6.9 (2010), pp. 659-662.

[^4]:    ${ }^{2}$ Mario Berta et al. "The uncertainty principle in the presence of quantum memory". In: Nature Physics 6.9 (2010), pp. 659-662.

[^5]:    ${ }^{2}$ Mario Berta et al. "The uncertainty principle in the presence of quantum memory". In: Nature Physics 6.9 (2010), pp. 659-662.

[^6]:    ${ }^{3}$ Amir Kalev and Gilad Gour. "Mutually unbiased measurements in finite dimensions". In: New Journal of Physics 16.5 (2014), p. 053038 .

[^7]:    ${ }^{3}$ Amir Kalev and Gilad Gour. "Mutually unbiased measurements in finite dimensions". In: New Journal of Physics 16.5 (2014), 053038.

[^8]:    ${ }^{3}$ Amir Kalev and Gilad Gour. "Mutually unbiased measurements in finite dimensions". In: New Journal of Physics 16.5 (2014), 053038.

[^9]:    ${ }^{3}$ Amir Kalev and Gilad Gour. "Mutually unbiased measurements in finite dimensions". In: New Journal of Physics 16.5 (2014), 053038.

[^10]:    ${ }^{3}$ Amir Kalev and Gilad Gour. "Mutually unbiased measurements in finite dimensions". In: New Journal of Physics 16.5 (2014), 053038.

[^11]:    ${ }^{4}$ Marco Tomamichel. Quantum Information Processing with Finite Resources: Mathematical Foundations. Vol. 5. Springer, 2015.

[^12]:    ${ }^{4}$ Marco Tomamichel. Quantum Information Processing with Finite Resources: Mathematical Foundations. Vol. 5. Springer, 2015.

[^13]:    ${ }^{4}$ Marco Tomamichel. Quantum Information Processing with Finite Resources: Mathematical Foundations. Vol. 5. Springer, 2015.

[^14]:    ${ }^{4}$ Marco Tomamichel. Quantum Information Processing with Finite Resources: Mathematical Foundations. Vol. 5. Springer, 2015.
    ${ }^{5}$ Mario Berta, Patrick J Coles, and Stephanie Wehner. "Entanglement-assisted guessing of complementary measurement outcomes". In: Physical Review A 90.6 (2014), p. 062127.

[^15]:    ${ }^{4}$ Marco Tomamichel. Quantum Information Processing with Finite Resources: Mathematical Foundations. Vol. 5. Springer, 2015.
    ${ }^{5}$ Mario Berta, Patrick J Coles, and Stephanie Wehner. "Entanglement-assisted guessing of complementary measurement outcomes". In: Physical Review A 90.6 (2014), p. 062127.

[^16]:    ${ }^{4}$ Marco Tomamichel. Quantum Information Processing with Finite Resources: Mathematical Foundations. Vol. 5. Springer, 2015.
    ${ }^{5}$ Mario Berta, Patrick J Coles, and Stephanie Wehner. "Entanglement-assisted guessing of complementary measurement outcomes". In: Physical Review A 90.6 (2014), p. 062127.

[^17]:    ${ }^{6}$ Mario Berta, Patrick J Coles, and Stephanie Wehner. "Entanglement-assisted guessing of complementary measurement outcomes". In: Physical Review A 90.6 (2014), p. 062127.

[^18]:    ${ }^{7}$ Joonwoo Bae and Leong-Chuan Kwek. "Quantum state discrimination and its applications". In: Journal of Physics A: Mathematical and Theoretical 48.8 (2015), p. 083001.

[^19]:    7 Joonwoo Bae and Leong-Chuan Kwek. "Quantum state discrimination and its applications". In: Journal of Physics A: Mathematical and Theoretical 48.8 (2015), p. 083001.
    ${ }^{8}$ Paul Hausladen and William K Wootters. "A 'pretty good'measurement for distinguishing quantum states". In: Journal of Modern Optics 41.12 (1994), pp. 2385-2390.

[^20]:    ${ }^{7}$ Joonwoo Bae and Leong-Chuan Kwek. "Quantum state discrimination and its applications". In: Journal of Physics A: Mathematical and Theoretical 48.8 (2015), p. 083001.
    ${ }^{8}$ Paul Hausladen and William K Wootters. "A 'pretty good'measurement for distinguishing quantum states". In: Journal of Modern Optics 41.12 (1994), pp. 2385-2390.

[^21]:    7 Joonwoo Bae and Leong-Chuan Kwek. "Quantum state discrimination and its applications". In: Journal of Physics A: Mathematical and Theoretical 48.8 (2015), p. 083001.
    ${ }^{8}$ Paul Hausladen and William K Wootters. "A 'pretty good'measurement for distinguishing quantum states". In: Journal of Modern Optics 41.12 (1994), pp. 2385-2390.

[^22]:    7 Joonwoo Bae and Leong-Chuan Kwek. "Quantum state discrimination and its applications". In: Journal of Physics A: Mathematical and Theoretical 48.8 (2015), p. 083001.
    ${ }^{8}$ Paul Hausladen and William K Wootters. "A 'pretty good'measurement for distinguishing quantum states". In: Journal of Modern Optics 41.12 (1994), pp. 2385-2390.
    ${ }^{9}$ Harry Buhrman et al. "Possibility, impossibility, and cheat sensitivity of quantum-bit string commitment". In: Physical Review A 78.2 (2008), p. 022316.

[^23]:    ${ }^{10}$ Alexey E Rastegin. "On uncertainty relations and entanglement detection with mutually unbiased measurements". In: Open Systems \& Information Dynamics 22.01 (2015), p. 1550005.

[^24]:    11 James Schneeloch, Curtis J Broadbent, and John C Howell. "Uncertainty Relation for Mutual Information". In: Physical Review A 90.6 (2014), p. 062119.

