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Guessing game

▶ A guessing game1 played by Alice and Bob
1. Bob prepares state ρAB and sends ρA to Alice
2. Alice measures either X or Z (uniformly) and stores outcome K
3. Alice tells Bob which measurement Θ has been conducted
4. Bob guesses the value of K

▶ X and Z are known to both Alice and Bob
▶ How well can Bob guess K on average?

1Patrick J Coles et al. “Entropic uncertainty relations and their applications”. In: Reviews of Modern Physics 89.1 (2017), p. 015002.
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Entanglement helps!
▶ Assume X = {|xi⟩} and Z = {|zj⟩} be complementary on A:

|⟨xi|zj⟩| = 1/
√
d for arbitrary i, j

▶ Suppose Bob prepares a maximally entangled state

|Ψ⟩AB =
1√
d

∑
i

|xi⟩A|xi⟩B =
1√
d

∑
j

|zj⟩A|zj⟩B

and sends ρA to Alice
▶ Measuring ρA with X/Z, Alice gets classical-quantum (cq.) states

ωXB =
1

d

∑
i

|xi⟩⟨xi|A ⊗ |xi⟩⟨xi|B

τZB =
1

d

∑
j

|zj⟩⟨zj |A ⊗ |zj⟩⟨zj |B

▶ If Alice obtains xi, Bob processes state xi. Similar for Z
▶ Bob can guess K with certainty by measuring his state
▶ Entanglement reduces the Bob’s uncertainty about K
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Uncertainty relation (in the presence of memory)
▶ How much can the entanglement reduce uncertainty?
▶ That is, what if Bob prepares an arbitrary state ρAB?
▶ Measuring ρA with X/Z, Alice gets two cq. states

ωXB =
∑
i

pi|xi⟩⟨xi| ⊗ ωB
i , pi = Tr⟨xi|ρAB|xi⟩,

τZB =
∑
j

qj |zj⟩⟨zj | ⊗ τBj , qj = Tr⟨zj |ρAB |zj⟩,

▶ To answer this question, we must know
1. How to quantify the entanglement of ρAB?
2. How to quantify the uncertainty of ωXB and τZB?

▶ Uncertainty relation in the presence of memory (UR)2

H(X|B)ω + H(Z|B)τ ⩾ log d+ H(A|B)ρ

▶ H(A|B)ω,τ,ρ is the conditional entropy of state ω, τ , and ρ

▶ H(A|B) quantifies the uncertainty about A given knowledge of B
2Mario Berta et al. “The uncertainty principle in the presence of quantum memory”. In: Nature Physics 6.9 (2010), pp. 659–662.
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Ingredients of a uncertainty relation

H(X|B)ω + H(Z|B)τ ⩾ log d+ H(A|B)ρ

▶ Five ingredients of a general uncertainty relation
Incompatible measurements: X and Z
State being measured: bipartite state ρAB

Uncertainty measure: conditional entropy H(A|B)ω,τ

Uncertainty relation form: lower bound on sum of uncertainties
Entanglement measure: conditional entropy H(A|B)ρ

▶ Our relation
Incompatible measurements: complete set of mutually unbiased

measurements
State being measured: bipartite state ρAB

Uncertainty measure: conditional collision entropy H2(A|B)ω,τ

Uncertainty relation form: an equality
Entanglement measure: conditional collision entropy H2(A|B)ρ



6/28

Ingredients of a uncertainty relation

H(X|B)ω + H(Z|B)τ ⩾ log d+ H(A|B)ρ

▶ Five ingredients of a general uncertainty relation
Incompatible measurements: X and Z
State being measured: bipartite state ρAB

Uncertainty measure: conditional entropy H(A|B)ω,τ

Uncertainty relation form: lower bound on sum of uncertainties
Entanglement measure: conditional entropy H(A|B)ρ

▶ Our relation
Incompatible measurements: complete set of mutually unbiased

measurements
State being measured: bipartite state ρAB

Uncertainty measure: conditional collision entropy H2(A|B)ω,τ

Uncertainty relation form: an equality
Entanglement measure: conditional collision entropy H2(A|B)ρ



7/28

Mutually unbiased measurements
▶ Let P(1) = {P (1)

x }x∈[d] and P(2) = {P (2)
x }x∈[d] be two POVMs:

∀θ = 1, 2, P (θ)
x ⩾ 0,

∑
x

P (θ)
x = 1

▶ They are mutually unbiased3 if for all x, x′ ∈ [d], θ = 1, 2

Tr
[
P (θ)
x

]
= 1, each operator is normalized

Tr
[
P (1)
x P (2)

x

]
=

1

d
, two measurements are unbiased

Tr
[
P (θ)
x P

(θ)
x′

]
= δx,x′κ+ (1− δx,x′)

1− κ

d− 1
.

▶ The efficiency parameter κ satisfies 1/d < κ ⩽ 1

▶ {P(θ)}θ∈Θ forms a set of MUMs if they are pairwise unbiased
▶ A complete set of MUMs is a set of MUMs of size d+ 1

▶ A complete set of MUMs can be explicitly constructed3

3Amir Kalev and Gilad Gour. “Mutually unbiased measurements in finite dimensions”. In: New Journal of Physics 16.5 (2014),
p. 053038.
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Conditional collision entropy

▶ Let ρAB be a quantum state on system AB

▶ The conditional collision entropy is defined as4

H2(A|B)ρ = − log Tr
[
ρAB(1A ⊗ ρB)

−1/2ρAB(1A ⊗ ρB)
−1/2

]
▶ 1A is the identity operator
▶ − log d ⩽ H2(A|B)ρ ⩽ log d
▶ For separable states σAB , H2(A|B)σ ⩾ 05

▶ H2(A|B)ρ < 0 ⇒ ρAB must be entangled
▶ Trivializing system B (ρB = 1), we get the collision entropy

H2 (A)ρ = − log Tr ρ2A

4Marco Tomamichel. Quantum Information Processing with Finite Resources: Mathematical Foundations. Vol. 5. Springer, 2015.
5Mario Berta, Patrick J Coles, and Stephanie Wehner. “Entanglement-assisted guessing of complementary measurement outcomes”.

In: Physical Review A 90.6 (2014), p. 062127.
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H2 (A)ρ = − log Tr ρ2A

4Marco Tomamichel. Quantum Information Processing with Finite Resources: Mathematical Foundations. Vol. 5. Springer, 2015.
5Mario Berta, Patrick J Coles, and Stephanie Wehner. “Entanglement-assisted guessing of complementary measurement outcomes”.

In: Physical Review A 90.6 (2014), p. 062127.
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Post-measurement state for a MUM

▶ Let P(θ) = {P (θ)
x }x∈[d] be a MUM in A

▶ Measuring ρAB on A by P(θ), we get a cq. state

ωX(θ)B =
d∑

x=1

|x⟩⟨x|X ⊗ TrA
[(

P (θ)
x ⊗ 1B

)
ρAB

]
(1)

▶ Register X stores the measurement outcome
▶ TrA[(P (θ)

x ⊗ 1B)ρAB ] is the post-measurement state (unnormalized)
left on system B

▶ Tr[(P (θ)
x ⊗ 1B)ρAB ] is probability that the outcome is x
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Post-measurement state for complete set of MUMs

▶ Let {P(θ)}θ∈[d+1] be a complete set of MUMs on system A

▶ Define the following cq. state

ωXBΘ =
1

d+ 1

d+1∑
θ=1

d∑
x=1

|x⟩⟨x|X ⊗ TrA
[(

P (θ)
x ⊗ 1B

)
ρAB

]
⊗ |θ⟩⟨θ|Θ (2)

▶ Θ indicates which MUM has been performed
▶ ωXBΘ is a uniform mixing of ωX(θ)B : ωXBΘ=θ = ωX(θ)B

▶ Conditional collision entropy of ωXBΘ, with partition X:BΘ

H2 (X|BΘ)ω = − log

 1

d+ 1

∑
θ,x

TrB
{

TrA[P (θ)
x ρ̃AB ]

2
}

where ρ̃AB = ρ
−1/4
B ρABρ

−1/4
B
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Theorem (An equality relation for complete set of MUMs)
Let {P(θ)}θ∈[d+1] be a complete set of MUMs on system A. For

arbitrary quantum state ρAB , it holds that

H2 (A|BΘ)ω = log (d+ 1)− log
(
f(κ) + g(κ)2− H2(A|B)ρ

)
, (3)

where ωXBΘ is defined in Eq. (2), and the coefficients are given by

f(κ) = 1 +
1− κ

d− 1
, g(κ) =

κd− 1

d− 1
.

▶ When κ = 1, Eq. (3) recovers the main result of [2]6

H2 (A|BΘ)ω = log (d+ 1)− log
(
1 + 2− H2(A|B)ρ

)

6Mario Berta, Patrick J Coles, and Stephanie Wehner. “Entanglement-assisted guessing of complementary measurement outcomes”.
In: Physical Review A 90.6 (2014), p. 062127.
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Pretty-good state discrimination
▶ State discrimination: Let S = {pi, ρi} be a state ensemble.

Sample σ from S. What is the index i of σ?
▶ Perform a measurement M = {Mi} to extract index: if the

measurement outcome is i, then assert σ ≡ ρi
▶ Finding optimal measurement is a complex optimization problem7

▶ Pretty-good measurement8 Mpg = {Mi} of S:
Mi = ρ−1/2(piρi)ρ

−1/2, where ρ =
∑

i piρi
▶ Pretty-good guessing probability

Ppg(S) =
∑
i

p2i Tr[ρ−1/2ρiρ
−1/2ρi]

▶ S is equivalent to a cq. state ρXB =
∑

i pi|i⟩⟨i| ⊗ ρBi
▶ Operational interpretation of the conditional collision entropy9

Ppg(X|B)ρ ≡ Ppg(S) = 2− H2(X|B)ρ

7Joonwoo Bae and Leong-Chuan Kwek. “Quantum state discrimination and its applications”. In: Journal of Physics A: Mathematical
and Theoretical 48.8 (2015), p. 083001.

8Paul Hausladen and William K Wootters. “A ‘pretty good’measurement for distinguishing quantum states”. In: Journal of Modern
Optics 41.12 (1994), pp. 2385–2390.

9Harry Buhrman et al. “Possibility, impossibility, and cheat sensitivity of quantum-bit string commitment”. In: Physical Review A 78.2
(2008), p. 022316.
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Pretty-good guessing for a complete set of MUMs
▶ Each MUM induces a cq. state of the form

ωX(θ)B =

d∑
x=1

|x⟩⟨x| ⊗ TrA
[(

P (θ)
x ⊗ 1B

)
ρAB

]
▶ How well can Bob guess x?

▶ He can guess “pretty-good”: Ppg(X(θ)|B)ω

▶ How well can Bob guess x for a complete set of MUMs, on average?
▶ Totally determined by the quantum collision entropy of ρAB

Lemma
Let {P(θ)}θ∈[d+1] be a complete set of MUMs on system A. For
arbitrary quantum state ρAB , it holds that

d+1∑
θ=1

Ppg
(
X(θ)

∣∣∣B)
ω
= f(κ) + g(κ)2− H2(A|B)ρ .
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Lower bound on sum of uncertainties
▶ Uncertainty relations are commonly expressed as lower bound on the

sum of uncertainties

Lemma
Let {P(θ)}θ∈[d+1] be a complete set of MUMs on system A. For

arbitrary quantum state ρAB , it holds that

1

d + 1

d+1∑
θ=1

H2
(
X

(θ)
∣∣∣B)

ω
⩾ log (d + 1) − log

(
f(κ) + g(κ)2

− H2(A|B)ρ
)
, (4)

▶ Trivializing system B, Eq. (4) reduces to

1

d + 1

d+1∑
θ=1

H2
(
X

(θ)
)
ω

⩾ log (d + 1) − log
(
f(κ) + g(κ)Tr[ρ2

A]
)

▶ This is a uncertainty relation without memory
▶ Recovers a special case (α = 2) of Proposition 3 in [9]10

10Alexey E Rastegin. “On uncertainty relations and entanglement detection with mutually unbiased measurements”. In: Open Systems
& Information Dynamics 22.01 (2015), p. 1550005.
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▶ Uncertainty relations are commonly expressed as lower bound on the

sum of uncertainties

Lemma
Let {P(θ)}θ∈[d+1] be a complete set of MUMs on system A. For

arbitrary quantum state ρAB , it holds that

1

d + 1

d+1∑
θ=1

H2
(
X

(θ)
∣∣∣B)

ω
⩾ log (d + 1) − log

(
f(κ) + g(κ)2

− H2(A|B)ρ
)
, (4)

▶ Trivializing system B, Eq. (4) reduces to

1

d + 1

d+1∑
θ=1

H2
(
X

(θ)
)
ω

⩾ log (d + 1) − log
(
f(κ) + g(κ)Tr[ρ2

A]
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An entanglement detection method

▶ Let {P(θ)}θ∈[d+1] be a complete set of MUMs on A

▶ Let {Q(θ)}θ∈[d+1] be an arbitrary set of d+ 1 measurements on B

▶ If Alice performs P(θ), Bob performs Q(θ). They get

ωX(θ)Y (θ) =

d∑
x,y=1

Tr
[(

P (θ)
x ⊗Q(θ)

y

)
ρAB

]
|x⟩⟨x| ⊗ |y⟩⟨y|.

▶ ωX(θ)Y (θ) can be evaluated from measurement statistics

Lemma
For arbitrary separable quantum state ρAB , it holds that

1

d+ 1

d+1∑
θ=1

H2

(
X(θ)

∣∣∣Y (θ)
)
ω
⩾ log (d+ 1)− log (f(κ) + g(κ)) .
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An entanglement detection method (cont.)

▶ How does the detection method work?
▶ Suppose now there exists a source producing states ρAB

▶ Alice and Bob sample from the source and gather statistics
▶ They estimate the joint distribution for each pair {P(θ),Q(θ)}
▶ They evaluate the sum of (classical) conditional collision entropies
▶ According to the above lemma, the source is entangled if

1

d+ 1

d+1∑
θ=1

H2

(
X(θ)

∣∣∣Y (θ)
)
ω
< log (d+ 1)− log (f(κ) + g(κ)) . (5)

▶ The choice of measurements {Q(θ)} on system B is arbitrary
▶ For best detection criterion, minimize the LHS. of Eq. (5) by

optimizing over all possible measurements {Q(θ)}
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A unified view
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A unified view (cont.)

ρAB

ωXAB

XA

τZAB

ZA

UR ωXAZB

ZB

ωXAXB
XB

τZAZB

ZB

τZAXB
XB

UR for CQ states



22/28

A unified view (cont.)

ρAB

ωXAB

XA

τZAB
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UR ωXAZB
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ωXAXB
XB
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UR for CQ states
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CQC conjecture
▶ Let XA and ZA be complementary on A
▶ Let XB and ZB be complementary on B
▶ XA ⊗ XB and ZA ⊗ ZB induce two classical states

ωXAXB =
∑
ij

pij |xA
i ⟩⟨xA

i | ⊗ |xB
j ⟩⟨xB

j |

pij = ⟨xA
i x

B
j |ρAB |xA

i x
B
j ⟩

τZAZB =
∑
mn

qmn|zAm⟩⟨zAm| ⊗ |zBn ⟩⟨zBn |

qmn = ⟨zAmzBn |ρAB|zAmzBn ⟩

▶ The complementary-quantum correlation conjecture (CQC)11

I
(
XA:XB

)
ω
+ I

(
ZA:ZB

)
τ

⩽ I(A:B)ρ

▶ I(A:B) is the mutual information quantifying the correlation
between A and B

11James Schneeloch, Curtis J Broadbent, and John C Howell. “Uncertainty Relation for Mutual Information”. In: Physical Review A
90.6 (2014), p. 062119.
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Our work fits into the unified view

ρAB

ωX(θ)B

P(θ)

τX(θ′)B

P(θ′)

UR

Ppg(X(θ)|B)ω

Mpg

Ppg(X(θ′)|B)τ
Mpg

Guessing game
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Summary

▶ What have done?
▶ An equality relation for complete set of MUMs
▶ Conditional collision entropy as uncertainty measure
▶ Some corollaries from the equality relation

1. Bound on pretty-good guessing probabilities
2. An uncertainty relation expressed as sum of uncertainties
3. An entanglement detection method

▶ What to do?
▶ Bounds on pretty-good guessing probabilities for a set of MUMs
▶ Uncertainty relations for a set of MUMs
▶ Finally, the CQC conjecture!
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Q & A

Thank you !

Any questions ?
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